Search Results

Now showing 1 - 3 of 3
  • Item
    Hybrid materials - past, present and future
    (Berlin : de Gruyter, 2014) Kickelbick, Guido
    Hybrid materials represent one of the most growing new material classes at the edge of technological innovations. Unique possibilities to create novel material properties by synergetic combination of inorganic and organic components on the molecular scale makes this materials class interesting for application-oriented research of chemists, physicists, and materials scientists. The modular approach for combination of properties by the selection of the best suited components opens new options for the generation of materials that are able to solve many technological problems. This review will show in selected examples how science and technological driven approaches can help to design better materials for future applications.
  • Item
    Structure-property relationships in mechanically stimulated Sorghum bicolor stalks
    (Berlin : de Gruyter, 2014) Lemloh, Marie-Louise; Pohl, Anna; Zeiger, Marco; Bauer, Petra; Weiss, Ingrid M.; Schneider, Andreas S.
    Mechanical properties of plants and underlying structure-property relationships are important for agricultural purposes as well as for biomimetic concepts. In this study, the effect of mechanical stimulation on morphology and bending properties of the stalk was investigated for Sorghum bicolor (Poaceae), a widely used drought-tolerant biomass grass. An experimental set-up allowing for defined growth and mechanical perturbation (flexing) during a defined growth period was designed. Mechanical properties of individual internodes of the stalk were determined by three-point bending tests. We found that the three investigated lines showed differences in their general bending strength in the non-stimulated condition. However, similar high range of bending strength values was measured for all plant lines after they underwent the mechanical stimulation procedure. The anatomy of internode cross-sections was examined to evaluate structure-property relationships. An increased thickness of the outer sclerenchymatous tissue was observed for internodes with higher bending strength values. Dried internodes fail under lower strains but showed higher bending strength. These findings show that mechanosensitivity in sorghum is dependent on genetic as well as environmental factors. The experimental system presented here offers new straight-forward possibilities for S. bicolor line selection for applications requiring mechanical strength of the stalk.
  • Item
    Species-specific shells: chitin synthases and cell mechanics in molluscs
    (Berlin : de Gruyter, 2012) Weiss, Ingrid M.
    The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article. The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/zkri.2012.1530