Search Results

Now showing 1 - 2 of 2
  • Item
    The mutual dependence of negative emission technologies and energy systems
    (Cambridge : RSC Publ., 2019) Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme; Minx, Jan; Peters, Glen P.; Socolow, Robert
    While a rapid decommissioning of fossil fuel technologies deserves priority, most climate stabilization scenarios suggest that negative emission technologies (NETs) are required to keep global warming well below 2 °C. Yet, current discussions on NETs are lacking a distinct energy perspective. Prominent NETs, such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS), will integrate differently into the future energy system, requiring a concerted research effort to determine adequate means of deployment. In this perspective, we discuss the importance of energy per carbon metrics, factors of future cost development, and the dynamic response of NETs in intermittent energy systems. The energy implications of NETs deployed at scale are massive, and NETs may conceivably impact future energy systems substantially. DACCS outperform BECCS in terms of primary energy required per ton of carbon sequestered. For different assumptions, DACCS displays a sequestration efficiency of 75–100%, whereas BECCS displays a sequestration efficiency of 50–90% or less if indirect land use change is included. Carbon dioxide removal costs of DACCS are considerably higher than BECCS, but if DACCS modularity and granularity helps to foster technological learning to <100$ per tCO2, DACCS may remove CO2 at gigaton scale. DACCS also requires two magnitudes less land than BECCS. Designing NET systems that match intermittent renewable energies will be key for stringent climate change mitigation. Our results contribute to an emerging understanding of NETs that is notably different to that derived from scenario modelling.
  • Item
    Judging the feasibility of TiO2 as photocatalyst for chemical energy conversion by quantitative reactivity determinants
    (Cambridge : RSC Publ., 2019) Dilla, Martin; Moustakas, Nikolaos G.; Becerikli, Ahmet E.; Peppel, Tim; Springer, Armin; Schlögl, Robert; Strunk, Jennifer; Ristig, Simon
    In this study we assess the general applicability of the widely used P25-TiO2 in gas-phase photocatalytic CO2 reduction based on experimentally determined reactivity descriptors from classical heterogeneous catalysis (productivity) and photochemistry (apparent quantum yield/AQY). A comparison of the results with reports on the use of P25 for thermodynamically more feasible reactions and our own previous studies on P25-TiO2 as photocatalyst imply that the catalytic functionality of this material, rather than its properties as photoabsorber, limits its applicability in the heterogeneous photocatalytic CO2 reduction in the gas phase. The AQY of IrOx/TiO2 in overall water splitting in a similar high-purity gas-solid process was four times as high, but still far from commercial viability.