Search Results

Now showing 1 - 5 of 5
  • Item
    Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields
    (Cambridge : RSC Publ., 2019) Korchak, Sergey; Emondts, Meike; Mamone, Salvatore; Blümich, Bernhard; Glöggler, Stefan
    Hyperpolarized metabolites are very attractive contrast agents for in vivo magnetic resonance imaging studies enabling early diagnosis of cancer, for example. Real-time production of concentrated solutions of metabolites is a desired goal that will enable new applications such as the continuous investigation of metabolic changes. To this end, we are introducing two NMR experiments that allow us to deliver high levels of polarization at high concentrations (50 mM) of an acetate precursor (55% 13C polarization) and acetate (17% 13C polarization) utilizing 83% para-state enriched hydrogen within seconds at high magnetic field (7 T). Furthermore, we have translated these experiments to a portable low-field spectrometer with a permanent magnet operating at 1 T. The presented developments pave the way for a rapid and affordable production of hyperpolarized metabolites that can be implemented in e.g. metabolomics labs and for medical diagnosis.
  • Item
    Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach
    (Cambridge : RSC Publ., 2017) Rumyantsev, Artem M.; Potemkin, Igor I.
    A polyelectrolyte complex (PEC) of oppositely charged linear chains is considered within the Random Phase Approximation (RPA). We study the salt-free case and use the continuous model assuming a homogeneous distribution of the charges throughout the polyions. The RPA correction to the PEC free energy is renormalized via subtraction of polyion self-energy in order to find the correlation free energy of the complex. An analogous procedure is usually carried out in the case of the Debye–Hückel (DH) plasma (a gas of point-like ions), where the infinite self-energy of point-like charges is subtracted from the diverging RPA correction. The only distinction is that in the PEC both the RPA correction and chain self-energy of connected like charges are convergent. This renormalization allows us to demonstrate that the correlation free energy of the PEC is negative, as could be expected, while the scaling approach postulates rather than proving the negative sign of the energy of interactions between the blobs. We also demonstrate that the increasing concentration of oppositely charged polyions in the solution first results in the formation of neutral globules of the PEC consisting of two polyions as soon as the concentration reaches a certain threshold value, cgl, whereas solution macroscopic phase separation (precipitation of globules) occurs at a much higher concentration, ccoac, ccoac ≫ cgl. Partitioning of polyions between different states is calculated and analytical dependencies of cgl and ccoac on the polyion length, degree of ionization and solvent polarity are found.
  • Item
    Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP
    (Cambridge : RSC Publ., 2016) Vorobii, Mariia; Pop-Georgievski, Ognen; de los Santos Pereira, Andres; Kostina, Nina Yu.; Jezorek, Ryan; Sedláková, Zdeňka; Percec, Virgil; Rodriguez-Emmenegger, Cesar
    Photoinduced surface-initiated single electron transfer living radical polymerization (SET-LRP) is a versatile technique for the preparation of polymer brushes. The vast diversity of compatible functional groups, together with a high end-group fidelity that enables precise control of the architecture, makes this approach an effective tool for tuning the properties of surfaces. We report the application of photoinduced SET-LRP for the surface-initiated grafting of polymer brushes from a wide range of methacrylate monomers for the first time. The living character of the process was demonstrated by the linear evolution of the polymer brush thickness in time, the ability to reinitiate the polymerization for the preparation of well-defined block copolymers, and also by X-ray photoelectron spectroscopy depth profiling. The surface patterning with these brushes could be achieved simply by restricting the irradiated area. The ability of poly(methacrylate) brushes prepared in this way to prevent non-specific protein adsorption is also demonstrated, indicating the suitability of this procedure for advanced applications.
  • Item
    SET-LRP in biphasic mixtures of fluorinated alcohols with water
    (Cambridge : RSC Publ., 2018) Moreno, Adrian; Liu, Tong; Ding, Liang; Buzzacchera, Irene; Galià, Marina; Möller, Martin; Wilson, Christopher J.; Lligadas, Gerard; Percec, Virgil
    Biphasic-binary mixtures of 2,2,2-trifluoroethanol (TFE) or 2,2,3,3-tetrafluoropropanol (TFP) with water were used as reaction media to synthesize well-defined poly(methyl acrylate) (PMA) with chain end functionality close to 100% by SET-LRP. Non-activated Cu(0) wire was used as a catalyst, taking advantage of the Cu(0)-activation property that these fluorinated alcohols possess. Biphasic-binary mixtures of water, containing a ligand and Cu(II)Br2 either generated by disproportionation of Cu(I)Br or externally added, and an organic solvent, containing a monomer and a polymer, were studied. Two N-ligands were investigated: the classic tris(2-dimethylaminoethyl)amine (Me6-TREN) and tris(2-aminoethyl)amine (TREN), as a more economically attractive alternative for technological purposes. The results reported here support the replacement of Me6-TREN by TREN, taking into account the fact that the latter requires small loadings of an externally added Cu(II)Br2 deactivator and a ligand in the water phase to mediate a living radical polymerization process. Both catalytic systems ensure efficient SET-LRP processes with first order kinetics to high conversion, linear dependence of experimental Mn on conversion, narrow molecular weight distribution, and near-quantitative chain end functionality.
  • Item
    On the impact of competing intra- and intermolecular triplet-state quenching on photobleaching and photoswitching kinetics of organic fluorophores
    (Cambridge : RSC Publ., 2019) Smit, Jochem H.; van der Velde, Jasper H. M.; Huang, Jingyi; Trauschke, Vanessa; Henrikus, Sarah S.; Chen, Si; Eleftheriadis, Nikolaos; Warszawik, Eliza M.; Herrmann, Andreas; Cordes, Thorben
    While buffer cocktails remain the most commonly used method for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with ‘self-healing’ or even functional properties such as photoswitching. In this contribution, we evaluated combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other. We find that although the rate of triplet-state quenching is additive, the photostability is limited by the faster pathway. Often intramolecular processes dominate the photophysical situation for combinations of covalently-linked and solution-based photostabilizers and photoswitching agents. Furthermore we show that intramolecular photostabilizers can protect fluorophores from reversible off-switching events caused by solution-additives, which was previously misinterpreted as photobleaching. Our studies also provide practical guidance for usage of photostabilizer–dye conjugates for STORM-type super-resolution microscopy permitting the exploitation of their improved photophysics for increased spatio-temporal resolution. Finally, we provide evidence that the biochemical environment, e.g., proximity of aromatic amino-acids such as tryptophan, reduces the photostabilization efficiency of commonly used buffer cocktails. Not only have our results important implications for a deeper mechanistic understanding of self-healing dyes, but they will provide a general framework to select label positions for optimal and reproducible photostability or photoswitching kinetics in different biochemical environments.