Search Results

Now showing 1 - 4 of 4
  • Item
    Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction
    (Weinheim : Wiley-VCH Verlag, 2019) Marx, Maximilian; Mele, Andrea; Spannenberg, Anke; Steinlechner, Christoph; Junge, Henrik; Schollhammer, Philippe; Beller, Matthias
    Reproducibility of photocatalytic reactions, especially when conducted on small scale for improved turnover numbers with in situ formed catalysts can prove challenging. Herein, we showcase the problematic reproducibility on the example of attractive photocatalytic CO2 reduction utilizing [FeFe] hydrogenase mimics. These Fe complexes, well-known for their application in proton reduction reactions, were combined with a heteroleptic Cu photosensitizer and produced CO/H2/HCO2H mixtures of variable constitution. However, the reactions indicated a poor reproducibility, even when conducted with well-defined complexes. Based on our experience, we make suggestions for scientists working in the field of photocatalysis on how to address and report the reproducibility of novel photocatalytic reaction protocols. In addition, we would like to highlight the importance of studying reproducibility of novel reaction protocols, especially in the fields of photocatalytic water splitting and CO2 reduction, where TONs are widely used as the comparable measure for catalytic activity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    PNPN-H in Comparison to other PNP, PNPN and NPNPN Ligands for the Chromium Catalyzed Selective Ethylene Oligomerization
    (Weinheim : Wiley-VCH Verlag, 2019) Rosenthal, Uwe
    Many examples exist for the chromium catalyzed selective ethylene oligomerization in which the influence of ligands is essential for the formation of products. Regarding the tri- and tetramerization to 1-hexene or 1-octene mostly PNP ligands are responsible for the tetra- and some of such modified ligands for the trimerization. A very special case in these reactions are PNPN−H ligands, showing in most cases highly selective trimerization of ethylene to 1-hexene. In this review all existing published information about these PNPN−H ligands is accumulated and compared to some other related PNP, PNPN and NPNPN ligands in the chromium catalyzed selective ethylene oligomerization with respect to the switch from tetra- to trimerization and back by different substituent pattern of PNP ligand. Mechanistic information and arguments are collected to explain the switch from tetra- to trimerization and back by substitution of functional groups in classical PNP to PNPN−H ligands as a result of mono- and dinuclear catalytic species. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization : A Multitechnique in situ/operando Study
    (Weinheim : Wiley-VCH Verlag, 2019) Grauke, Reni; Schepper, Rahel; Rabeah, Jabor; Schoch, Roland; Bentrup, Ursula; Bauer, Matthias; Brückner, Angelika
    The effect of different AlR3 activators (R=methyl, ethyl, isobutyl, n-octyl) has been studied in comparison to modified methylaluminoxane (MMAO) by operando EPR as well as by in situ UV-vis, ATR-IR and XANES/EXAFS spectroscopy during oligomerization of ethylene at 20 bar and 40 °C with a homogeneous Cr complex catalyst formed in situ upon mixing a Cr(acac)3 precursor, a Ph2PN(iPr)PPh2 ligand (PNP) and the activator. Coordination of PNP to Cr(acac)3 is initiated only in the presence of an activator. Highest 1-octene productivity (detected during operando EPR measurements) was obtained with MMAO which promotes bidentate coordination of the ligand to form an active (PNP)CrII(CH3)2 chelate complex. Rising bulkiness of R in AlR3 leads to only monodentate coordination of PNP to the Cr center by one P atom and increasing reduction to CrI to a maximum extend of around 30 % for AlOct3. This lowers the catalytic performance, which is mainly governed by the mode of PNP coordination rather than by the CrI content. ©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Conversion of γ-Valerolactone to Ethyl Valerate over Metal Promoted Ni/ZSM-5 Catalysts : Influence of Ni0/Ni2+ Heterojunctions on Activity and Product Selectivity
    (Weinheim : Wiley-VCH Verlag, 2019) Velisoju, Vijay Kumar; Jampaiah, Deshetti; Gutta, Naresh; Bentrup, Ursula; Brückner, Angelika; Bhargava, Suresh K.; Akula, Venugopal
    Promoter (Cr, Mo and W) modified Ni/ZSM-5 catalysts were explored in the vapor phase conversion of γ-valerolactone (GVL) to ethyl valerate (EV; gasoline blender) at atmospheric pressure. Among the three different promoters (Cr, Mo and W) tested the Mo-modified catalyst was found to be the best candidate. In addition, this catalyst was found to be stable up to 50 h reaction time with an insignificant decrease in activity. The good catalytic performance is related to an optimal ratio of acid and hydrogenation functions provided by Ni2+ and Ni0, respectively. In situ FTIR spectroscopic studies revealed a strong adsorption of GVL on all catalysts which quickly reacts with dosed ethanol by formation of EV, most pronounced on the Mo-modified catalyst, while VA was identified as side product. These findings suggest the preferred GVL ring opening by cracking the C−O bond on the methyl side of the GVL molecule on this type of catalysts leading to pentenoic acid as intermediate, which is quickly hydrogenated and esterified. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.