Search Results

Now showing 1 - 2 of 2
  • Item
    Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: Evaluation of electron-transporting properties and application in printed polymer transistors
    (London [u.a.] : Royal Society of Chemistry, 2014) Schmidt, G.C.; Höft, D.; Haase, K.; Hübler, A.C.; Karpov, E.; Tkachov, R.; Stamm, M.; Kiriy, A.; Haidu, F.; Zahn, D.R.T.; Yan, H.; Facchetti, A.
    The semiconducting properties of a bithiophene-naphthalene diimide copolymer (PNDIT2) prepared by Ni-catalyzed chain-growth polycondensation (P1) and commercially available N2200 synthesized by Pd-catalyzed step-growth polycondensation were compared. Both polymers show similar electron mobility of ∼0.2 cm2 V-1 s-1, as measured in top-gate OFETs with Au source/drain electrodes. It is noteworthy that the new synthesis has several technological advantages compared to traditional Stille polycondensation, as it proceeds rapidly at room temperature and does not involve toxic tin-based monomers. Furthermore, a step forward to fully printed polymeric devices was achieved. To this end, transistors with PEDOT:PSS source/drain electrodes were fabricated on plastic foils by means of mass printing technologies in a roll-to-roll printing press. Surface treatment of the printed electrodes with PEIE, which reduces the work function of PEDOT:PSS, was essential to lower the threshold voltage and achieve high electron mobility. Fully polymeric P1 and N2200-based OFETs achieved average linear and saturation FET mobilities of >0.08 cm2 V-1 s-1. Hence, the performance of n-type, plastic OFET devices prepared in ambient laboratory conditions approaches those achieved by more sophisticated and expensive technologies, utilizing gold electrodes and time/energy consuming thermal annealing and lithographic steps.
  • Item
    Direct catalytic conversion of cellulose to liquid straight-chain alkanes
    (Cambridge : Royal Society of Chemistry, 2014) Op de Beeck, Beau; Dusselier, Michiel; Geboers, Jan; Holsbeek, Jensen; Morré, Eline; Oswald, Steffen; Giebeler, Lars; Sels, Bert F.
    High yields of liquid straight-chain alkanes were obtained directly from cellulosic feedstock in a one-pot biphasic catalytic system. The catalytic reaction proceeds at elevated temperatures under hydrogen pressure in the presence of tungstosilicic acid, dissolved in the aqueous phase, and modified Ru/C, suspended in the organic phase. Tungstosilicic acid is primarily responsible for cellulose hydrolysis and dehydration steps, while the modified Ru/C selectively hydrogenates intermediates en route to the liquid alkanes. Under optimal conditions, microcrystalline cellulose is converted to 82% n-decane-soluble products, mainly n-hexane, within a few hours, with a minimum formation of gaseous and char products. The dominant route to the liquid alkanes proceeds via 5-hydroxymethylfurfural (HMF), whereas the more common pathway via sorbitol appears to be less efficient. High liquid alkane yields were possible through (i) selective conversion of cellulose to glucose and further to HMF by gradually heating the reactor, (ii) a proper hydrothermal modification of commercial Ru/C to tune its chemoselectivity to furan hydrogenation rather than glucose hydrogenation, and (iii) the use of a biphasic reaction system with optimal partitioning of the intermediates and catalytic reactions. The catalytic system is capable of converting subsequent batches of fresh cellulose, enabling accumulation of the liquid alkanes in the organic phase during subsequent runs. Its robustness is illustrated in the conversion of the raw (soft)wood sawdust.