Search Results

Now showing 1 - 2 of 2
  • Item
    Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides
    (Amsterdam : Elsevier B.V., 2018) Peng, J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F.
    Chemistry; Catalysis; Organic Synthesis © 2018 The Author(s)Functionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO)6 as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis. Functionalized alkyl iodides were prepared in moderate to excellent yields with outstanding functional group tolerance. Besides the high value of the obtained products, all the atoms from the starting materials were incorporated in the final products and the reaction had high atom efficiency as well.
  • Item
    ZnO Nanoparticles Encapsulated in Nitrogen-Doped Carbon Material and Silicalite-1 Composites for Efficient Propane Dehydrogenation
    (Amsterdam [u.a.] : Elsevier, 2019) Zhao, Dan; Li, Yuming; Han, Shanlei; Zhang, Yaoyuan; Jiang, Guiyuan; Wang, Yajun; Guo, Ke; Zhao, Zhen; Xu, Chunming; Li, Ranjia; Yu, Changchun; Zhang, Jian; Ge, Binghui; Kondratenko, Evgenii V.
    Chemistry; Catalysis; Nanoparticles © 2019 The Author(s)Non-oxidative propane dehydrogenation (PDH)is an attractive reaction from both an industrial and a scientific viewpoint because it allows direct large-scale production of propene and fundamental analysis of C-H activation respectively. The main challenges are related to achieving high activity, selectivity, and on-stream stability of environment-friendly and cost-efficient catalysts without non-noble metals. Here, we describe an approach for the preparation of supported ultrasmall ZnO nanoparticles (2–4 nm, ZnO NPs)for high-temperature applications. The approach consists of encapsulation of NPs into a nitrogen-doped carbon (NC)layer in situ grown from zeolitic imidazolate framework-8 on a Silicalite-1 support. The NC layer was established to control the size of ZnO NPs and to hinder their loss to a large extent at high temperatures. The designed catalysts exhibited high activity, selectivity, and on-stream stability in PDH. Propene selectivity of about 90% at 44.4% propane conversion was achieved at 600°C after nearly 6 h on stream. © 2019 The Author(s)