Search Results

Now showing 1 - 10 of 17
  • Item
    Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr
    (Munich : EGU, 2012) Burschil, T.; Scheer, W.; Kirsch, R.; Wiederhold, H.
    Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources.
  • Item
    Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile
    (Göttingen : Copernicus GmbH, 2018) Liersch, S.; Tecklenburg, J.; Rust, H.; Dobler, A.; Fischer, M.; Kruschke, T.; Koch, H.; Hattermann, F.F.
    Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Application of a model-based rainfall-runoff database as efficient tool for flood risk management
    (Chichester : John Wiley and Sons Ltd, 2013) Brocca, L.; Liersch, S.; Melone, F.; Moramarco, T.; Volk, M.
    A framework for a comprehensive synthetic rainfall-runoff database was developed to study catchment response to a variety of rainfall events. The framework supports effective flood risk assessment and management and implements simple approaches. It consists of three flexible components, a rainfall generator, a continuous rainfallrunoff model, and a database management system. The system was developed and tested at two gauged river sections along the upper Tiber River (central Italy). One of the main questions was to investigate how simple such approaches can be applied without impairing the quality of the results. The rainfall-runoff model was used to simulate runoff on the basis of a large number of rainfall events. The resulting rainfallrunoff database stores pre-simulated events classified on the basis of the rainfall amount, initial wetness conditions and initial discharge. The real-time operational forecasts follow an analogue method that does not need new model simulations. However, the forecasts are based on the simulation results available in the rainfall-runoff database (for the specific class to which the forecast belongs). Therefore, the database can be used as an effective tool to assess possible streamflow scenarios assuming different rainfall volumes for the following days. The application to the study site shows that magnitudes of real flood events were appropriately captured by the database. Further work should be dedicated to introduce a component for taking account of the actual temporal distribution of rainfall events into the stochastic rainfall generator and to the use of different rainfall-runoff models to enhance the usability of the proposed procedure.
  • Item
    Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
    (Munich : EGU, 2015) Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
  • Item
    Comparison of water flows in four European lagoon catchments under a set of future climate scenarios
    (Basel : MDPI AG, 2015) Hesse, C.; Stefanova, A.; Krysanova, V.
  • Item
    Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland
    (Basel : MDPI AG, 2017) Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T.
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.