Search Results

Now showing 1 - 8 of 8
  • Item
    Assessment of climate change and associated impact on selected sectors in Poland
    (Warsaw : De Gruyter Open, 2018) Kundzewicz, Zbigniew W.; Piniewski, Mikołaj; Mezghani, Abdelkader; Okruszko, Tomasz; Pińskwar, Iwona; Kardel, Ignacy; Hov, Øystein; Szcześniak, Mateusz; Szwed, Małgorzata; Benestad, Rasmus E.; Marcinkowski, Paweł; Graczyk, Dariusz; Dobler, Andreas; Førland, Eirik J.; O’Keefe, Joanna; Choryński, Adam; Parding, Kajsa M.; Haugen, Jan Erik
    The present paper offers a brief assessment of climate change and associated impact in Poland, based on selected results of the Polish–Norwegian CHASE-PL project. Impacts are examined in selected sectors, such as water resources, natural hazard risk reduction, environment, agriculture and health. Results of change detection in long time series of observed climate and climate impact variables in Poland are presented. Also, projections of climate variability and change are provided for time horizons of 2021–2050 and 2071–2100 for two emission scenarios, RCP4.5 and RCP8.5 in comparison with control period, 1971–2000. Based on climate projections, examination of future impacts on sectors is also carried out. Selected uncertainty issues relevant to observations, understanding and projections are tackled as well.
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    A new scenario framework for climate change research: The concept of shared socioeconomic pathways
    (Dordrecht [u.a.] : Springer, 2014) O'Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P.
    The new scenario framework for climate change research envisions combining pathways of future radiative forcing and their associated climate changes with alternative pathways of socioeconomic development in order to carry out research on climate change impacts, adaptation, and mitigation. Here we propose a conceptual framework for how to define and develop a set of Shared Socioeconomic Pathways (SSPs) for use within the scenario framework. We define SSPs as reference pathways describing plausible alternative trends in the evolution of society and ecosystems over a century timescale, in the absence of climate change or climate policies. We introduce the concept of a space of challenges to adaptation and to mitigation that should be spanned by the SSPs, and discuss how particular trends in social, economic, and environmental development could be combined to produce such outcomes. A comparison to the narratives from the scenarios developed in the Special Report on Emissions Scenarios (SRES) illustrates how a starting point for developing SSPs can be defined. We suggest initial development of a set of basic SSPs that could then be extended to meet more specific purposes, and envision a process of application of basic and extended SSPs that would be iterative and potentially lead to modification of the original SSPs themselves.
  • Item
    Hydrological impacts of moderate and high-end climate change across European river basins
    (Amsterdam : Elsevier B.V., 2018) Lobanova, A.; Liersch, S.; Nunes, J.P.; Didovets, I.; Stagl, J.; Huang, S.; Koch, H.; Rivas López, M.D.R.; Maule, C.F.; Hattermann, F.; Krysanova, V.
    Study region: To provide a picture of hydrological impact of climate change across different climatic zones in Europe, this study considers eight river basins: Tagus in Iberian Peninsula; Emån and Lule in Scandinavia; Rhine, Danube and Teteriv in Central and Eastern Europe; Tay on the island of Great Britain and Northern Dvina in North-Eastern Europe. Study focus: In this study the assessment of the impacts of moderate and high-end climate change scenarios on the hydrological patterns in European basins was conducted. To assess the projected changes, the process-based eco-hydrological model SWIM (Soil and Water Integrated Model) was set up, calibrated and validated for the basins. The SWIM was driven by the bias-corrected climate projections obtained from the coupled simulations of the Global Circulation Models and Regional Climate Models. New hydrological insights for the region: The results show robust decreasing trends in water availability in the most southern river basin (Tagus), an overall increase in discharge in the most northern river basin (Lule), increase in the winter discharge and shift in seasonality in Northern and Central European catchments. The impacts of the high-end climate change scenario RCP 8.5 continue to develop until the end of the century, while those of the moderate climate change scenario RCP 4.5 level-off after the mid-century. The results of this study also confirm trends, found previously with mostly global scale models.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.
  • Item
    Comparing impacts of climate change on streamflow in four large African river basins
    (Göttingen : Copernicus GmbH, 2014) Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; Hattermann, F.F.
    This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data.

    For the climate impact assessment, we drive the model with outputs of five bias corrected Earth system models of Coupled Model Intercomparison Project Phase 5 (CMIP5) for the representative concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the context of climate trends of the whole African continent and compared to a CMIP5 ensemble of 19 models in order to test their representativeness. Subsequently, we compare the trends in mean discharges, seasonality and hydrological extremes in the 21st century. The uncertainty of results for all basins is high. Still, climate change impact is clearly visible for mean discharges but also for extremes in high and low flows. The uncertainty of the projections is the lowest in the Upper Blue Nile, where an increase in streamflow is most likely. In the Niger and the Limpopo basins, the magnitude of trends in both directions is high and has a wide range of uncertainty. In the Oubangui, impacts are the least significant. Our results confirm partly the findings of previous continental impact analyses for Africa. However, contradictory to these studies we find a tendency for increased streamflows in three of the four basins (not for the Oubangui). Guided by these results, we argue for attention to the possible risks of increasing high flows in the face of the dominant water scarcity in Africa. In conclusion, the study shows that impact intercomparisons have added value to the adaptation discussion and may be used for setting up adaptation plans in the context of a holistic approach.
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.