Search Results

Now showing 1 - 10 of 31
Loading...
Thumbnail Image
Item

Regional effects of atmospheric aerosols on temperature: An evaluation of an ensemble of online coupled models

2017, Baró, Rocío, Palacios-Peña, Laura, Baklanov, Alexander, Balzarini, Alessandra, Brunner, Dominik, Forkel, Renate, Hirtl, Marcus, Honzak, Luka, Pérez, Juan Luis, Pirovano, Guido, San José, Roberto, Schröder, Wolfram, Werhahn, Johannes, Wolke, Ralf, Žabkar, Rahela, Jiménez-Guerrero, Pedro

The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

Loading...
Thumbnail Image
Item

Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

2017, Marinou, Eleni, Amiridis, Vassilis, Binietoglou, Ioannis, Tsikerdekis, Athanasios, Solomos, Stavros, Proestakis, Emannouil, Konsta, Dimitra, Papagiannopoulos, Nikolaos, Tsekeri, Alexandra, Vlastou, Georgia, Zanis, Prodromos, Balis, Dimitrios, Wandinger, Ulla, Ansmann, Albert

In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.

Loading...
Thumbnail Image
Item

Representativeness of European biochar research: part I–field experiments

2017, Verheijen, Frank G. A., Mankasingh, Utra, Penizek, Vit, Panzacchi, Pietro, Glaser, Bruno, Jeffery, Simon, Bastos, Ana Catarina, Tammeorg, Priit, Kern, Jürgen, Zavalloni, Costanza, Zanchettin, Giulia, Sakrabani, Ruben

A representativeness survey of existing European Biochar field experiments within the Biochar COST Action TD1107 was conducted to gather key information for setting up future experiments and collaborations, and to minimise duplication of efforts amongst European researchers. Woody feedstock biochar, applied without organic or inorganic fertiliser appears over-represented compared to other categories, especially considering the availability of crop residues, manures, and other organic waste streams and the efforts towards achieving a zero waste economy. Fertile arable soils were also over-represented while shallow unfertile soils were under-represented. Many of the latter are likely in agroforestry or forest plantation land use. The most studied theme was crop production. However, other themes that can provide evidence of mechanisms, as well as potential undesired side-effects, were relatively well represented. Biochar use for soil contamination remediation was the least represented theme; further work is needed to identify which specific contaminants, or mixtures of contaminants, have the potential for remediation by different biochars. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].

Loading...
Thumbnail Image
Item

Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands

2012, Brander, L.M., Bräuer, I., Gerdes, H., Ghermandi, A., Kuik, O., Markandya, A., Navrud, S., Nunes, P.A.L.D., Schaafsma, M., Vos, H., Wagtendonk, A.

There is growing policy and academic interest in transferring ecosystem service values from existing valuation studies to other ecosystem sites at a large geographic scale. Despite the evident policy demand for this combined transfer and "scaling up" of values, an approach to value transfer that addresses the challenges inherent in assessing ecosystem changes at a national or regional level is not available. This paper proposes a methodology for scaling up ecosystem service values to estimate the welfare effects of ecosystem change at this larger geographical scale. The methodology is illustrated by applying it to value the impact of climate change on European wetlands for the period 2000-2050. The proposed methodology makes use of meta-analysis to produce a value function. The parameters of the value function include spatial variables on wetland size and abundance, GDP per capita, and population. A geographic information system is used to construct a database of wetland sites in the case study region with information on these spatial variables. Site-specific ecosystem service values are subsequently estimated using the meta-analytic value function. The proposed method is shown to enable the adjustment of transferred values to reflect variation in important spatial variables and to account for changes in the stock of ecosystems.

Loading...
Thumbnail Image
Item

Long-term wintertime trend of zonally asymmetric ozone in boreal extratropics during 1979-2016

2018, Schneidereit, A., Peters, D.H.W.

Strong zonally asymmetric ozone (ZAO) changes are observed in the boreal extratropics for winter. During the TOMS (Total Ozone Mapping Spectrometer) period (1979-1992) the decrease of zonally asymmetric total ozone (ZATO) was twice as large as the observed zonal mean total ozone trend over Europe in January mainly caused by ultra-long wave transport. Recent studies have demonstrated that the ozone evolution reveals three different quasi-bidecadal trend stages: (i) Decline, (ii) leveling, and (ii) healing. This study focuses on the ZAO structure in boreal extratropics and on ozone transport changes by ultra-long waves during winter months. ERA-Interim data together with a linearized transport model are used. During the healing stage ZATO increases significantly over the North Atlantic/European region for January. The ZATO increase (healing stage) and ZATO decrease (decline stage) are caused by different monthly mean ozone transport characteristics of ultra-long planetary waves over the North Atlantic/European region. Furthermore, the vertical advection (ageostrophic transport) of ozone versus its horizontal component dominates in the lower and middle stratosphere during the healing stage. It is hypothesized that these ageostrophic wind changes are mainly caused by a wave train directed northeastwards which seems to be directly linked to the Arctic warming. © 2018 by the authors.

Loading...
Thumbnail Image
Item

An assessment of aerosol optical properties from remote-sensing observations and regional chemistry-climate coupled models over Europe

2018, Palacios-Peña, Laura, Baró, Rocío, Baklanov, Alexander, Balzarini, Alessandra, Brunner, Dominik, Forkel, Renate, Hirtl, Marcus, Honzak, Luka, López-Romero, José María, Montávez, Juan Pedro, Pérez, Juan Luis, Pirovano, Guido, San José, Roberto, Schröder, Wolfram, Werhahn, Johannes, Wolke, Ralf, Žabkar, Rahela, Jiménez-Guerrero, Pedro

Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs. Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data). Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in the aerosol representation. The modelling results showed better skills when ARI+ACI interactions were included; hence this improvement in the representation of AOD (above 30 % in the model error) and AE (between 20 and 75 %) is important to provide a better description of aerosol-radiation-cloud interactions in regional climate models.

Loading...
Thumbnail Image
Item

Representativeness of European biochar research: part II–pot and laboratory studies

2017, Sakrabani, Ruben, Kern, Jürgen, Mankasingh, Utra, Zavalloni, Costanza, Zanchettin, Giulia, Bastos, Ana Catarina, Tammeorg, Priit, Jeffery, Simon, Glaser, Bruno, Verheijen, Frank G. A.

Biochar research is extensive and there are many pot and laboratory studies carried out in Europe to investigate the mechanistic understanding that govern its impact on soil processes. A survey was conducted in order to find out how representative these studies under controlled experimental conditions are of actual environmental conditions in Europe and biomass availability and conversion technologies. The survey consisted of various key questions related to types of soil and biochar used, experimental conditions and effects of biochar additions on soil chemical, biological and physical properties. This representativeness study showed that soil texture and soil organic carbon contents used by researchers are well reflected in the current biochar research in Europe (through comparison with published literature), but less so for soil pH and soil type. This study provides scope for future work to complement existing research findings, avoiding unnecessary repetitions and highlighting existing research gaps. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].

Loading...
Thumbnail Image
Item

Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX

2013, Groß, S., Esselborn, M., Abicht, F., Wirth, M., Fix, A., Minikin, A.

Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characterization of the aerosol type "pollution aerosol" and thus is valuable both to distinguish continental pollution aerosol from other aerosol types and to determine mixtures with other types of aerosols.

Loading...
Thumbnail Image
Item

Climate of the last millennium: Ensemble consistency of simulations and reconstructions

2013, Bothe, O., Jungclaus, J.H., Zanchettin, D., Zorita, E.

Are simulations and reconstructions of past climate and its variability consistent with each other? We assess the consistency of simulations and reconstructions for the climate of the last millennium under the paradigm of a statistically indistinguishable ensemble. In this type of analysis, the null hypothesis is that reconstructions and simulations are statistically indistinguishable and, therefore, are exchangeable with each other. Ensemble consistency is assessed for Northern Hemisphere mean temperature, Central European mean temperature and for global temperature fields. Reconstructions available for these regions serve as verification data for a set of simulations of the climate of the last millennium performed at the Max Planck Institute for Meteorology. Consistency is generally limited to some sub-domains and some sub-periods. Only the ensemble simulated and reconstructed annual Central European mean temperatures for the second half of the last millennium demonstrates unambiguous consistency. Furthermore, we cannot exclude consistency of an ensemble of reconstructions of Northern Hemisphere temperature with the simulation ensemble mean. If we treat simulations and reconstructions as equitable hypotheses about past climate variability, the found general lack of their consistency weakens our confidence in inferences about past climate evolutions on the considered spatial and temporal scales. That is, our available estimates of past climate evolutions are on an equal footing but, as shown here, inconsistent with each other.

Loading...
Thumbnail Image
Item

Charlemagne's summit canal: An early medieval hydro-engineering project for passing the Central European Watershed

2014, Zielhofer, C., Leitholdt, E., Werther, L., Stele, A., Bussmann, J., Linzen, S., Schneider, M., Meyer, C., Berg-Hobohm, S., Ettel, P.

The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmü hl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.