Search Results

Now showing 1 - 9 of 9
  • Item
    The Effect of Chirp on Pulse Compression at a Group Velocity Horizon
    (New York, NY : IEEE, 2016) Babushkin, Ihar; Amiranashvili, Shalva; Bree, Carsten; Morgner, Uwe; Steinmeyer, Gunter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting group-velocity horizon can be exploited for adiabatic compression of the soliton down into the few-cycle regime. Here, we study the delicate phase- and frequency-matching mechanism of soliton/dispersive wave interaction by controlling the input chirp of the dispersive wave. We demonstrate that such a modification of the dispersive wave can significantly alter the soliton dynamics. In particular, we show that it allows a decrease of the fiber length needed for the best compression and, to some extent, control of the trajectory of the soliton. The mechanism of such an influence is related to the modification of the phase-matching condition between the soliton and dispersive wave.
  • Item
    Accelerated rogue solitons triggered by background radiation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    [no abstract available]
  • Item
    Cancellation of Raman self-frequency shift for compression of optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Pickartz, Sabrina; Brée, Carsten; Bandelow, Uwe; Amiranashvili, Shalva
    We study to which extent a fiber soliton can be manipulated by a specially chosen continuous pump wave. A group velocity matched pump scatters at the soliton, which is compressed due to the energy/momentum transfer. As the pump scattering is very sensitive to the velocity matching condition, soliton compression is quickly destroyed by the soliton self-frequency shift (SSFS). This is especially true for ultrashort pulses: SSFS inevitably impairs the degree of compression. We demonstrate numerically that soliton enhancement can be restored to some extent and the compressed soliton can be stabilized, provided that SSFS is canceled by a second pump wave. Still the available compression degree is considerably smaller than that in the Raman-free nonlinear fibers.
  • Item
    Adjustable pulse compression scheme for generation of few-cycle pulses in the mid-infrared
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    An novel adjustable adiabatic soliton compression scheme is presented, enabling a coherent pulse source with pedestal-free few-cycle pulses in the infrared or mid-infrared regime. This scheme relies on interaction of a dispersive wave and a soliton copropagating at nearly identical group velocities in a fiber with enhanced infrared transmission. The compression is achieved directly in one stage, without necessity of an external compensation scheme. Numerical simulations are employed to demonstrate this scheme for silica and fluoride fibers, indicating ultimate limitations as well as the possibility of compression down to the single-cycle regime. Such output pulses appear ideally suited as seed sources for parametric amplification schemes in the mid-infrared.
  • Item
    Saturation of the all-optical Kerr effect in solids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Borchers, Bastian; Brée, Carsten; Birkholz, Simon; Demircan, Ayhan
    We discuss the influence of the higher-order Kerr effect (HOKE) in wide band gap solids at extreme intensities below the onset of optically induced damage. Using different theoretical models, we employ multiphoton absorption rates to compute the nonlinear refractive index by a Kramers-Kronig transform. Within this theoretical framework we provide an estimate for the appearance of significant deviations from the standard optical Kerr effect predicting a linear index change with intensity. We discuss the role of the observed saturation behavior in practically relevant situations, including Kerr lens mode-locking and supercontinuum generation in photonic crystal fibers. Furthermore we present experimental data from a multi-wave mixing experiment in BaF2 which can be explained by the appearance of the HOKE.
  • Item
    Kramers-Kronig relations and high order nonlinear susceptibilities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    As previous theoretical results recently revealed, a Kramers-Kronig transform of multiphoton absorption rates allows for a precise prediction on the dispersion of the nonlinear refractive index $n_2$ in the near IR. It was shown that this method allows to reproduce recent experimental results on the importance of the higher-order Kerr effect. Extending these results, the current manuscript provides the dispersion of $n_2$ for all noble gases in excellent agreement with reference data. It is furthermore established that the saturation and inversion of the nonlinear refractive index is highly dispersive with wavelength, which indicates the existence of different filamentation regimes. While shorter laser wavelengths favor the well-established plasma clamping regime, the influence of the higher-order Kerr effect dominates in the long wavelength regime.
  • Item
    Filamentary pulse self-compression : the impact of the cell windows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Brée, Carsten; Demircan, Ayhan; Bethge, Jens; Nibbering, Erik T.J.; Skupin, Stefan; Bergé, Luc; Steinmeyer, Günter
    Self-compression of multi-millijoule laser pulses during filamentary propagation is usually explained by the interplay of self-focusing and defocusing effects, causing a substantial concentration of energy on the axis of the propagating optical pulse. Recently, it has been argued that cell windows may play a decisive role in the self-compression mechanism. As such windows have to be used for media other than air their presence is often unavoidable, yet they present a sudden non-adiabatic change in dispersion and nonlinearity that should lead to a destruction of the temporal and spatial integrity of the light bullets generated in the self-compression mechanism. We now experimentally prove that there is in fact a self-healing mechanism that helps to overcome the potentially destructive consequences of the cell windows. We show in two carefully conducted experiments that the cell window position decisively influences activation or inhibition of the self-healing mechanism. A comparison with a windowless cell shows that presence of this mechanism is an important prerequisite for the exploitation of self-compression effects in windowed cells filled with inert gases.
  • Item
    Modulation instability in filamentary self-compression
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Brée, Carsten; Demircan, Ayhan; Steinmeyer, Günter
    We numerically analyze filamentary propagation for various medium- and input pulse parameters and show that temporal self-compression can greatly benefit from refocusing events. Analyzing the dynamical behavior in the second focal spot, it turns out that a dispersive temporal break-up may appear due to the emission of a hyperbolic shock-wave from the self-steepened trailing edge of the pulse. This break-up event enhances the self-compression capabilities of laser filaments, enabling up to 12-fold temporal compression. Only slightly perturbing the input pulse parameters, we further identify a regime in which refocusing events give rise to extended subdiffractive propagation in a weakly ionized channel.
  • Item
    Transient pulse compression at a group velocity horizon
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Babushkin, Ihar; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave-packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting groupvelocity horizon can be exploited for adiabatic compression of the soliton down into the fewcycle regime. Here we show that both mechanisms can be combined. In such a transient compressor, parameters of the dispersive wave may then serve to actively control the soliton compression and adjust the pulse duration in the presence of disturbances. While a certain amount of control is already enabled by the delay between soliton and dispersive wave, the means of controlling the compression process are substantially enhanced by additionally manipulating the chirp of the dispersive wave. Moreover, controlling the chirp of the dispersive wave also enables correction for limitations of the compression scheme due to a self-frequency shift of the soliton or for uncompensated dispersion in the scheme. This substantially widens the practicality of the compression scheme and other applications of the highly efficient nonlinear interaction at the group-velocity horizon.