Search Results

Now showing 1 - 6 of 6
  • Item
    Forests under climate change: Potential risks and opportunities
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Lasch-Born, P.; Suckow, F.; Gutsch, M.; Reyer, C.; Hauf, Y.; Murawski, A.; Pilz, T.
  • Item
    The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6
    (München : European Geopyhsical Union, 2016) Ruane, Alex C.; Teichmann, Claas; Arnell, Nigel W.; Carter, Timothy R.; Ebi, Kristie L.; Frieler, Katja; Goodess, Clare M.; Hewitson, Bruce; Horton, Radley; Kovats, R. Sari; Lotze, Heike K.; Mearns, Linda O.; Navarra, Antonio; Ojima, Dennis S.; Riahi, Keywan; Rosenzweig, Cynthia; Themessl, Matthias; Vincent, Katharine
    This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.
  • Item
    Climate change impacts on hydrology and water resources
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Hattermann, F.F.; Huang, S.; Koch, H.
  • Item
    Historical greenhouse gas concentrations for climate modelling (CMIP6)
    (München : European Geopyhsical Union, 2017) Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander; Lorbacher, Katja; Meinshausen, Nicolai; Etheridge, David M.; Fraser, Paul J.; Montzka, Stephen A.; Rayner, Peter J.; Trudinger, Cathy M.; Krummel, Paul B.; Beyerle, Urs; Canadell, Josep G.; Daniel, John S.; Enting, Ian G.; Law, Rachel M. Law; Lunder, Chris R.; O'Doherty, Simon; Prinn, Ron G.; Reimann, Stefan; Rubino, Mauro; Velders, Guus J.M.; Vollmer, Martin K.; Wang, Ray H.J.; Weiss, Ray
    Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3ppm, CH4 at 808.2ppb and N2O at 273.0ppb. The data are available at https://esgf-node.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality).
  • Item
    Implications of potentially lower climate sensitivity on climate projections and policy
    (Bristol : IOP Publishing, 2014) Rogelj, Joeri; Meinshausen, Malte; Sedláček, Jan; Knutti, Reto
    Climate sensitivity, the long-term temperature response to CO2, has been notoriously difficult to constrain until today. Estimates based on the observed warming trends favor lower values, while the skill with which comprehensive climate models are able to simulate present day climate implies higher values to be more plausible. We find that much lower values would postpone crossing the 2 °C temperature threshold by about a decade for emissions near current levels, or alternatively would imply that limiting warming to below 1.5 °C would require about the same emission reductions as are now assumed for 2 °C. It is just as plausible, however, for climate sensitivity to be at the upper end of the consensus range. To stabilize global-mean temperature at levels of 2 °C or lower, strong reductions of greenhouse gas emissions in order to stay within the allowed carbon budget seem therefore unavoidable over the 21st century. Early reductions and the required phase-out of unabated fossil fuel emissions would be an important societal challenge. However, erring on the side of caution reduces the risk that future generations will face either the need for even larger emission reductions or very high climate change impacts.
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.