Search Results

Now showing 1 - 10 of 18
Loading...
Thumbnail Image
Item

Crystal structure of (1S, 2R,4S)-1-((phenylamino)methyl)-4-(prop-1-en-2-yl) cyclohexane-1,2-diol), C16H23NO2

2011, Outouch, R., Boualy, B., El Firdoussi, L., Ali, M.A., Rizzoli, C., Spannenberg, A.

C16H23NO2, orthorhombic, P2 12121 (no. 19), a = 5.9637(3) Å, b = 8.8317(5) Å, c = 27.809(1) Å, V = 1464.7 Å3, Z = 4, Rgt(F) = 0.026, wRref(F2) = 0.040, T= 150 K.

Loading...
Thumbnail Image
Item

Crystal structures of two ansa-titanocene tri-fluoro-methane-sulfonate complexes bearing the Me2Si(C5Me4)2 ligand

2016, Kessler, Monty, Godemann, Christian, Spannenberg, Anke, Beweries, Torsten

The crystal structures of two ansa-titanocene tri-fluoro-methane-sulfonate complexes bearing the Me2Si(C5Me4)2 ligand are reported, namely [di-methylbis-(η5-tetra-methyl-cyclo-penta-dien-yl)silane](tri-fluoro-methane-sulfonato-κ2O,O')titanium(III) toluene monosolvate, [Ti(CF3O3S)(C20H30Si)]·C7H8, 1, and chlorido-[di-methyl-bis-(η5-tetra-methyl-cyclo-penta-dien-yl)silane](tri-fluoro-methane-sulfonato-κO)titanium(IV), [Ti(CF3O3S)(C20H30Si)Cl], 2. Both complexes display a bent metallocene unit, the metal atom being coordinated in a distorted tetra-hedral geometry, with the tri-fluoro-methane-sulfonate anion acting as a bidentate or monodentate ligand in 1 and 2, respectively. In 1, weak π-π stacking inter-actions involving the toluene solvent mol-ecules [centroid-to-centroid distance = 3.9491 (11) Å] are observed.

Loading...
Thumbnail Image
Item

Crystal structure of 1-hydroxy-2,2,6,6-tetramethylpiperidin-1-ium trifluoromethanesulfonate

2015, Godemann,Christian, Spannenberg, Anke, Beweries, Torsten

In the cation of the title salt, C9H20NO+·CF3O3S-, the six-membered heterocyclic ring displays a chair conformation. In the crystal, centrosymmetric pairs of cations and anions are linked by N-H...O and O-H...O hydrogen bonds to form rings with a R44(14) graph-set motif.

Loading...
Thumbnail Image
Item

The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors

2015, Smith, Dan A., Beweries, Torsten, Blasius, Clemens, Jasim, Naseralla, Nazir, Ruqia, Nazir, Sadia, Robertson, Craig C., Whitwood, Adrian C., Hunter, Christopher A., Brammer, Lee, Perutz, Robin N.

The association constants and enthalpies for the binding of hydrogen bond donors to group 10 transition metal complexes featuring a single fluoride ligand (trans-[Ni(F)(2-C5NF4)(PR3)2], R = Et 1a, Cy 1b, trans-[Pd(F)(4-C5NF4)(PCy3)2] 2, trans-[Pt(F){2-C5NF2H(CF3)}(PCy3)2] 3 and of group 4 difluorides (Cp2MF2, M = Ti 4a, Zr 5a, Hf 6a; Cp*2MF2, M = Ti 4b, Zr 5b, Hf 6b) are reported. These measurements allow placement of these fluoride ligands on the scales of organic H-bond acceptor strength. The H-bond acceptor capability β (Hunter scale) for the group 10 metal fluorides is far greater (1a 12.1, 1b 9.7, 2 11.6, 3 11.0) than that for group 4 metal fluorides (4a 5.8, 5a 4.7, 6a 4.7, 4b 6.9, 5b 5.6, 6b 5.4), demonstrating that the group 10 fluorides are comparable to the strongest organic H-bond acceptors, such as Me3NO, whereas group 4 fluorides fall in the same range as N-bases aniline through pyridine. Additionally, the measurement of the binding enthalpy of 4-fluorophenol to 1a in carbon tetrachloride (−23.5 ± 0.3 kJ mol–1) interlocks our study with Laurence’s scale of H-bond basicity of organic molecules. The much greater polarity of group 10 metal fluorides than that of the group 4 metal fluorides is consistent with the importance of pπ–dπ bonding in the latter. The polarity of the group 10 metal fluorides indicates their potential as building blocks for hydrogen-bonded assemblies. The synthesis of trans-[Ni(F){2-C5NF3(NH2)}(PEt3)2], which exhibits an extended chain structure assembled by hydrogen bonds between the amine and metal-fluoride groups, confirms this hypothesis.

Loading...
Thumbnail Image
Item

Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate

2015, Schirmer, Marie-Luis, Spannenberg, Anke, Werner, Thomas

The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.

Loading...
Thumbnail Image
Item

Crystal structure of 1,1,2,2-tetramethyl-1,2-bis(2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yl)disilane

2015, Godemann,Christian, Spannenberg, Anke, Beweries, Torsten

The mol­ecular structure of the title compound, C22H38Si2, features a trans arrangement of the cyclo­penta­dienyl rings to avoid steric strain [C-Si-Si-C torsion angle = -179.0 (5)°]. The Si-Si bond length is 2.3444 (4) Å. The most notable inter­molecular inter­actions in the mol­ecular packing are C-H...[pi] contacts that lead to the formation of wave-like supra­molecular chains along the b axis.

Loading...
Thumbnail Image
Item

Enantio- and diastereoselective synthesis of γ-amino alcohols

2015, Verkade, Jorge M. M., Quaedflieg, Peter J. L. M., Verzijl, Gerard K. M., Lefort, Laurent, van Delft, Floris L., de Vries, Johannes G., Rutjes, Floris P. J. T.

The γ-amino alcohol structural motif is often encountered in drugs and natural products. We developed two complementary catalytic diastereoselective methods for the synthesis of N-PMP-protected γ-amino alcohols from the corresponding ketones. The anti-products were obtained through Ir-catalyzed asymmetric transfer hydrogenation, the syn-products via Rh-catalyzed asymmetric hydrogenation.

Loading...
Thumbnail Image
Item

Crystal structure of bis{μ2-[(2-iminocyclopentylidene)methylidene]azanido-κ2 N:N'}bis[(η5-pentamethylcyclopentadienyl)zirconium(IV)] hexane monosolvate

2015, Becker, Lisanne, Spannenberg, Anke, Arndt, Perdita, Rosenthal, Uwe

The title compound, [Zr2(C10H15)4(C6H6N2)2]·C6H14, was obtained by the stoichiometric reaction of adipo­nitrile with [Zr(C10H15)2([eta]2-Me3SiC2SiMe3)]. Intra­molecular nitrile-nitrile couplings and deprotonation of the substrate produced the (1-imino-2-enimino)­cyclo­pentane ligand, which functions as a five-membered bridge between the two metal atoms. The ZrIV atom exhibits a distorted tetra­hedral coordination sphere defined by two penta­methyl­cyclo­penta­dienyl ligands, by the imino unit of one (1-imino-2-enimino)­cyclo­pentane and by the enimino unit of the second (1-imino-2-enimino)­cyclo­pentane. The cyclo­pentane ring of the ligand shows an envelope conformation. The asymmetric unit contains one half of the complex and one half of the hexane solvent mol­ecule, both being completed by the application of inversion symmetry. One of the penta­methyl­cyclo­penta­dienyl ligands is disordered over two sets of sites with a refined occupancy ratio of 0.8111 (3):0.189 (3). In the crystal, the complex mol­ecules are packed into rods extending along [100], with the solvent mol­ecules located in between. The rods are arranged in a distorted hexa­gonal packing.

Loading...
Thumbnail Image
Item

Synthesis and crystallographic characterization of [2,2-bis­(η5-penta­methyl­cyclo­penta­dien­yl)-3,4-bis(tri­methyl­sil­yl)-2-zircona­furan-5-one-κO5]triisobutyl­aluminium

2018-3-27, Burlakov, Vladimir V., Bogdanov, Vyacheslav S., Arndt, Perdita, Spannenberg, Anke, Rosenthal, Uwe, Beweries, Torsten, Shur, Vladimir B.

The crystal structure of the title zwitterionic zirconocene complex containing a furan­one unit, [AlZr(C10H15)2(C4H9)3(C9H18O2Si2)], is reported. On reacting a zircona­furan­one with two equivalents of HAl(i-Bu)2, disproportionation of the Lewis acid results in the formation of a triiso­butyl­aluminium fragment, Al(i-Bu)3, which coordinates to the exocyclic carbonyl O atom of the zircona­furan­one ring. Single-crystal X-ray diffraction reveals that the zircona­furan­one ring remains intact with coordination of the aluminium to the exocyclic O atom. One of the i-butyl groups is disordered over two sets of sites, with an occupancy ratio of 0.731 (3):0.269 (3).

Loading...
Thumbnail Image
Item

Crystal structure of tricarbonyl(N-diphenylphosphanyl-N,N'-diisopropyl-P-phenylphosphonous diamide-κ2 P,P')cobalt(I) tetracarbonylcobaltate(-I) toluene 0.25-solvate

2014, Dura, L., Spannenberg, A., Beweries, T.

The asymmetric unit of the title compound, [Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8, consists of two crystallographically independent cations with similar conformations, two anions, and one-half of a toluene molecule disordered about an inversion centre. In the cations, a Co/P/N/P four-membered slightly bent metallacycle is the key structural element. The pendant NH group is not coordinated to the CoI atom, which displays a distorted trigonal-bipyramidal coordination geometry. Weak interionic hydrogen bonds are observed between the NH groups and a carbonyl group of the tetrahedral [Co(CO)4]- anions.