Search Results

Now showing 1 - 10 of 77
  • Item
    Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites
    (Melville, NY : AIP, 2017) Socher, Robert; Krause, Beate; Pötschke, Petra
    The aim of this study was to decrease the electrical percolation threshold of multiwalled carbon nanotubes (MWCNTs) in a polyamide 12 matrix by the use of additives. Different kinds of additives were selected which either interact with the π-system of the MWCNTs (imidazolium based ionic liquid (IL) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)) or improve the MWCNT wettability (cyclic butylene terephthalate, CBT). The composites were melt mixed using a DACA microcompounder. The electrical percolation threshold for PA12/MWCNT without additives, measured on compression molded plates, was found between 2.0 and 2.25 wt%. With all used additives, a significant reduction of the electrical percolation threshold could be achieved. Whereas the addition of IL and CBT resulted in MWCNT percolation at around 1.0 wt%, a slightly higher percolation threshold between 1.0 and 1.5 wt% was found for PTCDA as an additive. Interestingly, the electrical resistivity at higher loadings was decreased by nearly two decades when using CBT and one decade after application of PTCDA, whereas IL did not contribute to lower values in this range. In all cases macrodispersion as assessed by light microscopy was not improved and even worse as compared to non-modified composites. In summary, the results illustrate that these kinds of additives are able to improve the performance of PA12 based MWCNT nanocomposites.
  • Item
    Saltwater intrusion under climate change in North-Western Germany - mapping, modelling and management approaches in the projects TOPSOIL and go-CAM
    (Les Ulis : EDP Sciences, 2018) Wiederhold, Helga; Scheer, Wolfgang; Kirsch, Reinhard; Azizur Rahman, M.; Ronczka, Mathias; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    Climate change will result in rising sea level and, at least for the North Sea region, in rising groundwater table. This leads to a new balance at the fresh–saline groundwater boundary and a new distribution of saltwater intrusions with strong regional differentiations. These effects are investigated in several research projects funded by the European Union and the German Federal Ministry of Education and Research (BMBF). Objectives and some results from the projects TOPSOIL and go-CAM are presented in this poster.
  • Item
    A Case for Integrated Data Processing in Large-Scale Cyber-Physical Systems
    (Maui, Hawaii : HICSS, 2019) Glebke, René; Henze, Martin; Wehrle, Klaus; Niemietz, Philipp; Trauth, Daniel; Mattfeld, Patrick; Bergs, Thomas; Bui, Tung X.
    Large-scale cyber-physical systems such as manufacturing lines generate vast amounts of data to guarantee precise control of their machinery. Visions such as the Industrial Internet of Things aim at making this data available also to computation systems outside the lines to increase productivity and product quality. However, rising amounts and complexities of data and control decisions push existing infrastructure for data transmission, storage, and processing to its limits. In this paper, we exemplarily study a fine blanking line which can produce up to 6.2 Gbit/s worth of data to showcase the extreme requirements found in modern manufacturing. We consequently propose integrated data processing which keeps inherently local and small-scale tasks close to the processes while at the same time centralizing tasks relying on more complex decision procedures and remote data sources. Our approach thus allows for both maintaining control of field-level processes and leveraging the benefits of “big data” applications.
  • Item
    Formalizing Gremlin pattern matching traversals in an integrated graph Algebra
    (Aachen, Germany : RWTH Aachen, 2019) Thakkar, Harsh; Auer, Sören; Vidal, Maria-Esther; Samavi, Reza; Consens, Mariano P.; Khatchadourian, Shahan; Nguyen, Vinh; Sheth, Amit; Giménez-García, José M.; Thakkar, Harsh
    Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ-ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex-ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys-tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match-ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra.
  • Item
    Melt mixed composites of polypropylene with singlewalled carbon nanotubes for thermoelectric applications: Switching from p- to n-type behavior by additive addition
    (Melville, NY : AIP, 2019) Pötschke; Petra; Krause, Beate; Luo, Jinji
    Composites were prepared with polypropylene (PP) as the matrix and singlewalled CNTs (SWCNTs) of the type TUBALL from OCSiAl Ltd. as the conducting component by melt processing in a small-scale twin-screw compounder. In order to switch the typical p-type behavior of such composites from positive Seebeck coefficients (S) into n-type behavior with negative Seebeck coefficients, a non-ionic surfactant polyoxyethylene 20 cetyl ether (Brij58) was used and compared with a PEG additive, which was shown previously to be able to induce such switching. For PP-2 wt% SWCNT composites Brij58 is shown to result in n-type composites. The negative S values (up to −48.2 µV/K) are not as high as in the case of previous results using PEG (−56.6 µV/K). However, due to the more pronounced effect of Brij58 on the electrical conductivity, the achieved power factors are higher and reach a maximum of 0.144 µW/(m·K2) compared to previous 0.078 µW/(m·K2) with PEG. Dispersion improvement depends on the type of SWCNTs obtained by using varied synthesis/treatment conditions. Solution prepared composites of PEG with SWCNTs also have negative S values, indicating the donation of electrons from PEG to the SWCNTs. However, such composites are brittle and not suitable as thermoelectric materials.
  • Item
    Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in Polly-XT
    (Les Ulis : EDP Sciences, 2018) Engelmann, Ronny; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Kottas, Michael; Marinou, Eleni; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    We replaced a 1064-nm interference filter of a Polly-XT lidar system by a 1058-nm filter to observe pure rotational Raman backscattering from atmospheric Nitrogen and Oxygen. Polly-XT is compact Raman lidar with a Nd:YAG laser (20 Hz, 200 mJ at 1064 nm) and a 30-cm telescope mirror which applies photomultipliers in photoncounting mode. We present the first measured signals at 1058 nm and the derived extinction profile from measurements aboard RV Polarstern and in Leipzig. In combination with another Polly-XT system we could also derive particle backscatter and lidar ratio profiles at 1064 nm.
  • Item
    Development of joining methods for highly filled Graphite/PP composite based bipolar plates for fuel cells: Adhesive joining and welding
    (Melville, NY : AIP, 2019) Rzeczkowski, P.; Lucia, M.; Müller, A.; Facklam, M.; Cohnen, A.; Schäfer, P.; Hopmann, C.; Hickmann, T.; Pötschke, Petra; Krause, Beate
    Novel material solutions for bipolar plates in fuel cells require adapted ways of joining and sealing technologies. Safe and life time enduring leak-tight contacts must be achieved by automatic processes using reasonable joint forces. A proper sealing should manage such challenges as good ageing properties, excellent leaktightness, high thermal conductivity and low gas permeability. Hence in this work, adhesive bonding and welding are considered as suitable methods, which can fulfill the requirements mentioned above. Adhesive systems seem to be more easy to apply than conventional sealing (hand layed-up rubber gaskets), e.g. with automatic dispensers. Additionally, the properties of an adhesive joint can be enhanced by a process-specific surface pre-treatment. This work focuses on the characterization of adhesive systems and their joints with highly filled graphite composites. Mechanical properties of the joints were characterized through lap-shear tests. The influence of ageing caused by humidity or acidic solvent at increased temperature on the bond line properties as well as neat adhesive was examined. The thermal conductivities of neat adhesives and through the entire joint were examined. In order to improve above conductivities, roughening, substrate pre-heating, post-curing and various contact pressure weights were applied. Plasma treatment was chosen as surface pre-treatment method for improving substrate's surface energy. An alternative to bonding is plastic welding, which does not require the use of sealants and adhesives. Based on former study of influences of filler content on the welding process using ultrasonic, hot plate or infrared welding, a welding method for joining the graphite compounds was derived.
  • Item
    Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites
    (Melville, NY : AIP, 2017) Krause, Beate; Cohnen, A.; Pötschke, Petra; Hickmann, T.; Koppler, D.; Proksch, B.; Kersting, T.; Hopmann, C.
    In this study, composites based on polypropylene (PP) and different graphite fillers were melt mixed using small scale microcompounder Xplore DSM15 as well as lab-scale co-rotating twin screw extruder Coperion ZSK26Mc. The measurements of the electrical and thermal conductivity as well as mechanical properties of the composites were performed on pressed plates. It was found that the addition of graphite powders having different particle size distributions leads to different increases of the thermal conductivity. For synthetic graphite, the PP composites filled with TIMCAL Timrex® KS500 reached the highest value of thermal conductivity of 0.52 W/(m·K) at 10 vol% loading, whereas this composite was not electrical conductive. Furthermore, the influence of a styrene-ethylene-butylene-styrene block copolymer (SEBS) based impact modifier on the mechanical properties of PP filled with 80 wt% of different synthetic graphites was investigated. For that the proportion of SEBS in the PP component was varied systematically. The conductivities were influenced by the type of graphite and the content of impact modifier. The results indicate that the impact strength of the composite containing TIMCAL Timrex® KS300-1250 can be increased by approx. 100 % when replacing 50 wt% of the PP component by SEBS.
  • Item
    Promoting access to and use of seismic data in a large scientific community
    (Les Ulis : EDP Sciences, 2017) Michel, Eric; Belkacem, Kevin; Samadi, Reza; de Assis Peralta, Raphael; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus; Monteiro, Mário J. P. F. G.; Cunha, Margarida S.; Ferreira, João Miguel T. S.
    The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).
  • Item
    Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles
    (Les Ulis : EDP Sciences, 2018) Haarig, Moritz; Ansmann, Albert; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Bohlmann, Stephanie; Gasteiger, Josef; Farrell, David; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.