Search Results

Now showing 1 - 2 of 2
  • Item
    Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2
    (Amsterdam : Elsevier, 2015) Giordano, L.; Brunner, D.; Flemming, J.; Hogrefe, C.; Im, U.; Bianconi, R.; Badia, A.; Balzarini, A.; Baró, R.; Hirtl, M.; Honzak, L.; Jorba, O.; Knote, C.; Kuenen, J.J.P.; Makar, P.A.; Manders-Groot, A.; Neal, L.; Pérez, J.L.; Pirovano, G.; Pouliot, G.; San José, R.; Savage, N.; Schröder, W.; Sokhi, R.S.; Syrakov, D.; Torian, A.; Tuccella, P.; Werhahn, J.; Wolke, R.; Yahya, K.; Žabkar, R.; Zhang, Y.; Galmarini, S.
    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality models to simulate the year 2010 over one European and one North American domain. The MACC re-analysis has been used as chemical initial (IC) and boundary conditions (BC) by all participating regional models in AQMEII-2. The aim of the present work is to evaluate the MACC re-analysis along with the participating regional models against a set of ground-based measurements (O3, CO, NO, NO2, SO2, SO42−) and vertical profiles (O3 and CO). Results indicate different degrees of agreement between the measurements and the MACC re-analysis, with an overall better performance over the North American domain. The influence of BC on regional air quality simulations is analyzed in a qualitative way by contrasting model performance for the MACC re-analysis with that for the regional models. This approach complements more quantitative approaches documented in the literature that often have involved sensitivity simulations but typically were limited to only one or only a few regional scale models. Results suggest an important influence of the BC on ozone for which the underestimation in winter in the MACC re-analysis is mimicked by the regional models. For CO, it is found that background concentrations near the domain boundaries are rather close to observations while those over the interior of the two continents are underpredicted by both MACC and the regional models over Europe but only by MACC over North America. This indicates that emission differences between the MACC re-analysis and the regional models can have a profound impact on model performance and points to the need for harmonization of inputs in future linked global/regional modeling studies.
  • Item
    Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2
    (Amsterdam : Elsevier, 2014) Brunner, Dominik; Savage, Nicholas; Jorba, Oriol; Eder, Brian; Giordano, Lea; Badia, Alba; Balzarini, Alessandra; Baró, Rocío; Bianconi, Roberto; Chemel, Charles; Curci, Gabriele; Forkel, Renate; Jiménez-Guerrero, Pedro; Hirtl, Marcus; Hodzic, Alma; Honzak, Luka; Im, Ulas; Knote, Christoph; Makar, Paul; Manders-Groot, Astrid; van Meijgaard, Erik; Neal, Lucy; Pérez, Juan L.; Pirovano, Guido; San Jose, Roberto; Schröder, Wolfram; Sokhi, Ranjeet S.; Syrakov, Dimiter; Torian, Alfreida; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Yahya, Khairunnisa; Zabkar, Rahela; Zhang, Yang; Hogrefe, Christian; Galmarini, Stefano
    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional coupled chemistry and meteorology models participated in a coordinated model evaluation exercise. Each group simulated the year 2010 for a domain covering either Europe or North America or both. Here were present an operational analysis of model performance with respect to key meteorological variables relevant for atmospheric chemistry processes and air quality. These parameters include temperature and wind speed at the surface and in the vertical profile, incoming solar radiation at the ground, precipitation, and planetary boundary layer heights. A similar analysis was performed during AQMEII phase 1 (Vautard et al., 2012) for offline air quality models not directly coupled to the meteorological model core as the model systems investigated here. Similar to phase 1, we found significant overpredictions of 10-m wind speeds by most models, more pronounced during night than during daytime. The seasonal evolution of temperature was well captured with monthly mean biases below 2 K over all domains. Solar incoming radiation, precipitation and PBL heights, on the other hand, showed significant spread between models and observations suggesting that major challenges still remain in the simulation of meteorological parameters relevant for air quality and for chemistry–climate interactions at the regional scale.