Search Results

Now showing 1 - 2 of 2
  • Item
    Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá
    (Bristol : IOP Publ., 2019) Landholm, David M.; Pradhan, Prajal; Wegmann, Peter; Sánchez, Miguel A. Romero; Salazar, Juan Carlos Suárez; Kropp, Juergen P.
    Colombia's agriculture, forestry and other land use sector accounts for nearly half of its total greenhouse gas (GHG) emissions. The importance of smallholder deforestation is comparatively high in relation to its regional counterparts, and livestock agriculture represents the largest driver of primary forest depletion. Silvopastoral systems (SPSs) are presented as agroecological solutions that synergistically enhance livestock productivity, improve local farmers' livelihoods and hold the potential to reduce pressure on forest conversion. The department of Caquetá represents Colombia's most important deforestation hotspot. Targeting smallholder livestock farms through survey data, in this work we investigate the GHG mitigation potential of implementing SPSs for smallholder farms in this region. Specifically, we assess whether the carbon sequestration taking place in the soil and biomass of SPSs is sufficient to offset the per-hectare increase in livestock GHG emissions resulting from higher stocking rates. To address these questions we use data on livestock population characteristics and historic land cover changes reported from a survey covering 158 farms and model the carbon sequestration occurring in three different scenarios of progressively-increased SPS complexity using the CO2 fix model. We find that, even with moderate tree planting densities, the implementation of SPSs can reduce GHG emissions by 2.6 Mg CO2e ha−1 yr−1 in relation to current practices, while increasing agriculture productivity and contributing to the restoration of severely degraded landscapes.
  • Item
    Unintentional unfairness when applying new greenhouse gas emissions metrics at country level
    (Bristol : IOP Publ., 2019) Rogelj, Joeri; Schleussner, Carl-Friedrich
    The 2015 Paris Agreement sets out that rapid reductions in greenhouse gas (GHG) emissions are needed to keep global warming to safe levels. A new approach (known as GWP*) has been suggested to compare contributions of long- and short-lived GHGs, providing a close link between cumulative CO2-equivalent emissions and total warming. However, comparison factors for non-CO2 GHGs under the GWP* metric depend on past emissions, and hence raise questions of equity and fairness when applied at any but the global level. The use of GWP* would put most developing countries at a disadvantage compared to developed countries, because when using GWP* countries with high historical emissions of short-lived GHGs are exempted from accounting for avoidable future warming that is caused by sustaining these emissions. We show that when various established equity or fairness criteria are applied to GWP* (defined here as eGWP*), perceived national non-CO2 emissions vary by more than an order of magnitude, particularly in countries with high methane emissions like New Zealand. We show that national emission estimates that use GWP* are very sensitive to arbitrary choices made by countries and therewith facilitate the creation of loopholes when CO2-equivalent emissions based on the GWP* concept are traded between countries that use different approaches. In light of such equity-dependent accounting differences, GHG metrics like GWP* should only be used at the global level. A common, transparent and equity-neutral accounting metric is vital for the Paris Agreement's effectiveness and its environmental integrity.