Search Results

Now showing 1 - 10 of 23
  • Item
    Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign
    (Göttingen : Copernicus, 2013) Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P.
    From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
  • Item
    Climatology of northern polar latitude MLT dynamics: Mean winds and tides
    (Göttingen : Copernicus, 2010) Kumar, G.K.; Hocking, W.K.
    Mean winds and tides in the northern polar Mesosphere and Lower Thermosphere (MLT) have been studied using meteor radars located at Resolute Bay (75° N, 95° W) and Yellowknife (62.5° N, 114.3° W). The measurements for Resolute Bay span almost 12 years from July 1997 to February 2009 and the Yellowknife data cover 7 years from June 2002 to October 2008. The analysis reveals similar wind flow over both sites with a difference in magnitude. The summer zonal flow is westward at lower heights, eastward at upper heights and the winter zonal flow is eastward at all heights. The winter meridional flow is poleward and sometimes weakly equatorward, while non winter months show equatorward flow, with a strong equatorward jet during mid-summer months. The zonal and meridional winds show strong interannual variation with a dominant annual variation as well as significant latitudinal variation. Year to year variability in both zonal and meridional winds exists, with a possible solar cycle dependence. The diurnal, semidiurnal and terdiurnal tides also show large interannual variability and latitudinal variation. The diurnal amplitudes are dominated by an annual variation. The climatological monthly mean winds are compared with CIRA 86, GEWM and HWM07 and the climatological monthly mean amplitudes and phases of diurnal and semidiurnal tides are compared with GSWM00 predictions. The GEWM shows better agreement with observations than the CIRA 86 and HWM07. The GSWM00 model predictions need to be modified above 90 km. The agreements and disagreements between observations and models are discussed. © 2010 Author(s).
  • Item
    Long-term trends in the ionospheric F2 region with different solar activity indices
    (Göttingen : Copernicus, 2013) Mielich, J.; Bremer, J.
    A new comprehensive data collection by Damboldt and Suessmann (2012a) with monthly foF2 and M(3000)F2 median values is an excellent basis for the derivation of long-term trends in the ionospheric F2 region. Ionospheric trends have been derived only for stations with data series of at least 22 years (124 stations with foF2 data and 113 stations with M(3000)F2 data) using a twofold regression analysis depending on solar and geomagnetic activity. Three main results have been derived: Firstly, it could be shown that the solar 10.7 cm radio flux F10.7 is a better index for the description of the solar activity than the relative solar sunspot number R as well as the solar EUV proxy E10.7. Secondly, the global mean foF2 and
  • Item
    MAARSY-the new MST radar on Andøya: First results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array
    (Göttingen : Copernicus, 2012) Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.
    MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)
    (Göttingen : Copernicus, 2012) Renkwitz, T.; Singer, W.; Latteck, R.; Stober, G.; Rapp, M.
    In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30 N, 16.04 E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower stratosphere and in the mesosphere/lower thermosphere of the Arctic atmosphere. The monostatic radar is operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW, which implies high flexibility of beam forming and beam steering. During the design phase of MAARSY several model studies have been carried out in order to estimate the radiation pattern for various combinations of beam forming and steering. However, parameters like mutual coupling, active impedance and ground parameters have an impact on the radiation pattern, but can hardly be measured. Hence, experiments need to be designed to verify the model results. For this purpose, the radar has occasionally been used in passive mode, monitoring the noise power received from both distinct cosmic noise sources like e.g. Cassiopeia A and Cygnus A, and the diffuse cosmic background noise. The analysis of the collected dataset enables us to verify beam forming and steering attempts. These results document the current status of the radar during its development and provide valuable information for further improvement.
  • Item
    Some anomalies of mesosphere/lower thermosphere parameters during the recent solar minimum
    (Göttingen : Copernicus, 2011) Jacobi, C.; Hoffmann, P.; Placke, M.; Stober, G.
    The recent solar minimum has been characterized by an anomalous strong decrease of thermospheric density since 2005. Here we analyze anomalies of mesosphere/lower thermosphere parameters possibly connected with this effect. In particular, nighttime mean LF reflection heights measured at Collm, Germany, show a very strong decrease after 2005, indicating a density decrease. This decrease is also visible in mean meteor heights measured with VHF meteor radar at Collm. This density decrease is accompanied by an increase of gravity wave (GW) amplitudes in the upper mesosphere and a decrease in the lower thermosphere. On the decadal scale, GWs are negatively correlated with the background zonal wind, but this correlation is modulated in the course of the solar cycle, indicating the combined effect of GW filtering and density decrease.
  • Item
    MAARSY - the new MST radar on Andøya/Norway
    (Göttingen : Copernicus, 2010) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) is installing a new powerful VHF radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009/2010. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been operated continuously on Andøya for more than 10 years. The new system is a monostatic radar operated at 53.5MHz with an active phased array antenna consisting of 433 Yagi antennas. The 3- element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable output up to 2 kW. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum half power beam width of 3.6°, a maximum directive gain of 33.5 dB and a total transmitted peak power of approximately 800kW. The IF signals of each 7 transceivers connected to each 7 antennas arranged in a hexagon are combined to 61 receiving channels. Selected channels or combinations of IF signals are sent to a 16-channel data acquisition system with 25 m sampling resolution and 16-bit digitization specified which will be upgraded to 64 channels in the final stage. The high flexibility of the new system allows classical Doppler beam swinging as well as experiments with simultaneously formed multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatiotemporal resolution. © 2010 Author(s).
  • Item
    Meteor radar observations of mesopause region long-period temperature oscillations
    (Göttingen : Copernicus, 2016) Jacobi, Ch.; Samtleben, N.; Stober, G.
    Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.
  • Item
    Occurrence frequencies of polar mesosphere summer echoes observed at 69 N during a full solar cycle
    (Göttingen : Copernicus, 2013) Latteck, R.; Bremer, J.
    Polar mesosphere summer echoes (PMSE) are strong enhancements of received signal power at very high radar frequencies occurring at altitudes between about 80 and 95 km at polar latitudes during summer. PMSE are caused by inhomogeneities in the electron density of the radar Bragg scale within the plasma of the cold summer mesopause region in the presence of negatively charged ice particles. Thus the occurrence of PMSE contains information about mesospheric temperature and water vapour content but also depends on the ionisation due to solar wave radiation and precipitating high energetic particles. Continuous and homogeneous observations of PMSE have been done on the North-Norwegian island Andøya (69.3 N, 16.0 E) from 1999 until 2008 using the ALWIN VHF radar at 53.5 MHz. In 2009 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) started the installation of the Middle Atmosphere Alomar Radar System (MAARSY) at the same location. The observation of mesospheric echoes could be continued in spring 2010 starting with an initial stage of expansion of MAARSY and is carried out with the completed installation of the radar since May 2011. Since both the ALWIN radar and MAARSY are calibrated, the received echo strength of PMSE from 14 yr of mesospheric observations could be converted to absolute signal power. Occurrence frequencies based on different common thresholds of PMSE echo strength were used for investigations of the solar and geomagnetic control of the PMSE as well as of possible long-term changes. The PMSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity. The occurrence frequencies of the PMSE show slightly positive trends but with marginal significance levels.