Search Results

Now showing 1 - 7 of 7
  • Item
    The VMC Survey. XXVII. Young Stellar Structures in the LMC's Bar Star-forming Complex
    (London : Institute of Physics Publ., 2017) Sun, Ning-Chen; Grijs, Richard de; Subramanian, Smitha; Bekki, Kenji; Bell, Cameron P. M.; Cioni, Maria-Rosa L.; Ivanov, Valentin D.; Marconi, Marcella; Oliveira, Joana M.; Piatti, Andrés E.; Ripepi, Vincenzo; Rubele, Stefano; Tatton, Ben L.; van Loon, Jacco T.
    Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(τ/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(τ/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300 pc, suggesting that the young stellar structures are completely dispersed on a timescale of ∼100 Myr. These results are consistent with the characteristics of the 30 Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.
  • Item
    The VMC Survey. XXIX. Turbulence-controlled Hierarchical Star Formation in the Small Magellanic Cloud
    (London : Institute of Physics Publ., 2018) Sun, Ning-Chen; de Grijs, Richard; Cioni, Maria-Rosa L.; Rubele, Stefano; Subramanian, Smitha; van Loon, Jacco T.; Bekki, Kenji; Bell, Cameron P.M.; Ivanov, Valentin D.; Marconi, Marcella; Muraveva, Tatiana; Oliveira, Joana M.; Ripepi, Vincenzo
    In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJK s survey of the Magellanic system). Young stellar structures are identified as surface overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter-area dimension of 1.44 ± 0.02 for their projected boundaries. They have a power-law mass-size relation, power-law size/mass distributions, and a log-normal surface density distribution. We derive a projected fractal dimension of 1.48 ± 0.03 from the mass-size relation, or of 1.4 ± 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium, supporting a scenario of hierarchical star formation regulated by supersonic turbulence.
  • Item
    Chemical Abundances and Ages of the Bulge Stars in APOGEE High-velocity Peaks
    (London : Institute of Physics Publ., 2017) Zhou, Yingying; Shen, Juntai; Liu, Chao; Li, Zhao-Yu; Mao, Shude; Kunder, Andrea; Rich, R. Michael; Zasowski, G.; Fernandez-Trincado, J. G.; Majewski, Steven R.; Lin, Chien-Cheng; Geisler, Doug; Tang, Baitian; Villanova, S.; Roman-Lopes, A.; Schultheis, M.; Nidever, David L.; Meza, Andrés; Pan, Kaike; Bizyaev, D. V.
    A cold, high-velocity (HV, ∼200 km s-1) peak was first reported in several Galactic bulge fields based on the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) commissioning observations. Both the existence and the nature of the HV peak are still under debate. Here we revisit this feature with the latest APOGEE DR13 data. We find that most of the low-latitude bulge fields display a skewed Gaussian distribution with an HV shoulder. However, only 3 out of 53 fields show distinct HV peaks around 200 km s-1. The velocity distribution can be well described by Gauss-Hermite polynomials, except for the three fields showing clear HV peaks. We find that the correlation between the skewness parameter (h 3) and the mean velocity (), instead of a distinctive HV peak, is a strong indicator of the bar. It was recently suggested that the HV peak is composed of preferentially young stars. We choose three fields showing clear HV peaks to test this hypothesis using the metallicity, [α/M], and [C/N] as age proxies. We find that both young and old stars show HV features. The similarity between the chemical abundances of stars in the HV peaks and the main component indicates that they are not systematically different in terms of chemical abundance or age. In contrast, there are clear differences in chemical space between stars in the Sagittarius dwarf and the bulge stars. The strong HV peaks off-plane are still to be explained properly and could be different in nature.
  • Item
    Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE
    (London : Institute of Physics Publ., 2018) Anna Marino, Raffaella; Cantalupo, Sebastiano; Lilly, Simon J.; Gallego, Sofia G.; Straka, Lorrie A.; Borisova, Elena; Pezzulli, Gabriele; Bacon, Roland; Brinchmann, Jarle; Carollo, C. Marcella; Caruana, Joseph; Conseil, Simon; Contini, Thierry; Diener, Catrina; Finley, Hayley; Inami, Hanae; Leclercq, Floriane; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Wendt, Martin; Wisotzki, Lutz
    Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a "dark galaxy" phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Lyα sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Lyα luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 ∗ that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z ≈2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t =60 Myr on the quasar lifetime.
  • Item
    The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch
    (London : Institute of Physics Publ., 2019) Freedman, Wendy L.; Madore, Barry F.; Hatt, Dylan; Hoyt, Taylor J.; Jang, In Sung; Beaton, Rachael L.; Burns, Christopher R.; Lee, Myung Gyoon; Monson, Andrew J.; Neeley, Jillian R.; Phillips, M.M.; Rich, Jeffrey A.; Seibert, Mark
    We present a new and independent determination of the local value of the Hubble constant based on a calibration of the tip of the red giant branch (TRGB) applied to Type Ia supernovae (SNe Ia). We find a value of H0 = 69.8 ± 0.8 (±1.1% stat) ± 1.7 (±2.4% sys) km s−1 Mpc−1. The TRGB method is both precise and accurate and is parallel to but independent of the Cepheid distance scale. Our value sits midway in the range defined by the current Hubble tension. It agrees at the 1.2σ level with that of the Planck Collaboration et al. estimate and at the 1.7σ level with the Hubble Space Telescope (HST) SHoES measurement of H0 based on the Cepheid distance scale. The TRGB distances have been measured using deep HST Advanced Camera for Surveys imaging of galaxy halos. The zero-point of the TRGB calibration is set with a distance modulus to the Large Magellanic Cloud of 18.477 ± 0.004 (stat) ± 0.020 (sys) mag, based on measurement of 20 late-type detached eclipsing binary stars, combined with an HST parallax calibration of a 3.6 μm Cepheid Leavitt law based on Spitzer observations. We anchor the TRGB distances to galaxies that extend our measurement into the Hubble flow using the recently completed Carnegie Supernova Project I ( CSP-I ) sample containing about 100 well-observed SNe Ia . There are several advantages of halo TRGB distance measurements relative to Cepheid variables; these include low halo reddening, minimal effects of crowding or blending of the photometry, only a shallow (calibrated) sensitivity to metallicity in the I band, and no need for multiple epochs of observations or concerns of different slopes with period. In addition, the host masses of our TRGB host-galaxy sample are higher, on average, than those of the Cepheid sample, better matching the range of host-galaxy masses in the CSP-I distant sample and reducing potential systematic effects in the SNe Ia measurements.
  • Item
    An Hα Imaging Survey of All (Ultra)luminous Infrared Galaxies at Decl. ≥ -30 in the GOALS Sample
    (London : Institute of Physics Publ., 2019) Jin, Jun-Jie; Zhu, Yi-Nan; Wu, Hong; Lei, Feng-Jie; Cao, Chen; Meng, Xian-Min; Zhou, Zhi-Min; Lam, Man I.
    This paper presents the result of Hα imaging for luminous and ultraluminous infrared galaxies. It is a complete subsample of the Great Observatories All-sky LIRG Survey (GOALS) with decl. ≥ -30 , and consists of 148 galaxies with log(L IR/L ) ≥ 11.0. All the Hα images were carried out using the 2.16 m telescope at the Xinglong Station of the National Astronomy Observatories, Chinese Academy of Sciences (NAOC), during the year from 2006 to 2009. We obtained the pure Hα luminosity for each galaxy and corrected the luminosity for [N ii] emission, filter transmission, and extinction. We also classified these galaxies based on their morphology and interaction. We found that the distribution of star-forming regions in these galaxies is related to this classification. As the merging process advanced, these galaxies tended to have a more compact distribution of star-forming regions, higher L IR, and warmer IR-color (f 60/f 100). These results imply that the degree of dynamical disturbance plays an important role in determining the distribution of a star-forming region.
  • Item
    Improved Dynamical Constraints on the Masses of the Central Black Holes in Nearby Low-mass Early-type Galactic Nuclei and the First Black Hole Determination for NGC 205
    (London : Institute of Physics Publ., 2019) Nguyen, Dieu D.; Seth, Anil C.; Neumayer, Nadine; Iguchi, Satoru; Cappellari, Michelle; Strader, Jay; Chomiuk, Laura; Tremou, Evangelia; Pacucci, Fabio; Nakanishi, Kouichiro; Bahramian, Arash; Nguyen, Phuong M.; den Brok, Mark; Ahn, Christopher C.; Voggel, Karina T.; Kacharov, Nikolay; Tsukui, Takafumi; Ly, Cuc K.; Dumont, Antoine; Pechetti, Renuka
    We improve the dynamical black hole (BH) mass estimates in three nearby low-mass early-type galaxies: NGC 205, NGC 5102, and NGC 5206. We use new Hubble Space Telescope (HST)/STIS spectroscopy to fit the star formation histories of the nuclei in these galaxies, and use these measurements to create local color–mass-to-light ratio (M/L) relations. We then create new mass models from HST imaging and combined with adaptive optics kinematics, we use Jeans dynamical models to constrain their BH masses. The masses of the central BHs in NGC 5102 and NGC 5206 are both below one million solar masses and are consistent with our previous estimates, ${9.12}_{-1.53}^{+1.84}\times {10}^{5}$ M⊙ and ${6.31}_{-2.74}^{+1.06}\times {10}^{5}$ M⊙ (3σ errors), respectively. However, for NGC 205, the improved models suggest the presence of a BH for the first time, with a best-fit mass of ${6.8}_{-6.7}^{+95.6}\times {10}^{3}$ M⊙ (3σ errors). This is the least massive central BH mass in a galaxy detected using any method. We discuss the possible systematic errors of this measurement in detail. Using this BH mass, the existing upper limits of both X-ray, and radio emissions in the nucleus of NGC 205 suggest an accretion rate lesssim10−5 of the Eddington rate. We also discuss the color–M/Leff relations in our nuclei and find that the slopes of these vary significantly between nuclei. Nuclei with significant young stellar populations have steeper color–M/Leff relations than some previously published galaxy color–M/Leff relations.