Search Results

Now showing 1 - 2 of 2
  • Item
    Recurrence Quantification Analysis at work: Quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease
    (London : Nature Publishing Group, 2018) Afsar, O.; Tirnakli, U.; Marwan, N.
    In this letter, making use of real gait force profiles of healthy and patient groups with Parkinson disease which have different disease severity in terms of Hoehn-Yahr stage, we calculate various heuristic complexity measures of the recurrence quantification analysis (RQA). Using this technique, we are able to evince that entropy, determinism and average diagonal line length (divergence) measures decrease (increases) with increasing disease severity. We also explain these tendencies using a theoretical model (based on the sine-circle map), so that we clearly relate them to decreasing degree of irrationality of the system as a course of gait's nature. This enables us to interpret the dynamics of normal/pathological gait and is expected to increase further applications of this technique on gait timings, gait force profiles and combinations of them with various physiological signals.
  • Item
    Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry
    (London : Nature Publishing Group, 2018) Yousefpour, R.; Augustynczik, A.L.D.; Reyer, C.P.O.; Lasch-Born, P.; Suckow, F.; Hanewinkel, M.
    European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.