Search Results

Now showing 1 - 6 of 6
  • Item
    Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
    We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
  • Item
    GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Lécz, Z.; Konoplev, I.V.; Seryi, A.; Andreev, A.
    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.
  • Item
    Even harmonic generation in isotropic media of dissociating homonuclear molecules
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Silva, R.E.F.; Rivière, P.; Morales, F.; Smirnova, O.; Ivanov, M.; Martín, F.
    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process.
  • Item
    Strong-field ionization of clusters using two-cycle pulses at 1.8 μm
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Schütte, Bernd; Ye, Peng; Patchkovskii, Serguei; Austin, Dane R.; Brahms, Christian; Strüber, Christian; Witting, Tobias; Ivanov, Misha Yu; Tisch, John W. G.; Marangos, Jon P.
    The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale.
  • Item
    The sequence to hydrogenate coronene cations: A journey guided by magic numbers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas
    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
  • Item
    Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Steele, J.A.; Lewis, R.A.; Horvat, J.; Nancarrow, M.J.B.; Henini, M.; Fan, D.; Mazur, Y.I.; Schmidbauer, M.; Ware, M.E.; Yu, S.-Q.; Salamo, G.J.
    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys.