Search Results

Now showing 1 - 7 of 7
  • Item
    MAARSY-the new MST radar on Andøya: First results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array
    (Göttingen : Copernicus, 2012) Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.
    MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
  • Item
    Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)
    (Göttingen : Copernicus, 2012) Renkwitz, T.; Singer, W.; Latteck, R.; Stober, G.; Rapp, M.
    In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30 N, 16.04 E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower stratosphere and in the mesosphere/lower thermosphere of the Arctic atmosphere. The monostatic radar is operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW, which implies high flexibility of beam forming and beam steering. During the design phase of MAARSY several model studies have been carried out in order to estimate the radiation pattern for various combinations of beam forming and steering. However, parameters like mutual coupling, active impedance and ground parameters have an impact on the radiation pattern, but can hardly be measured. Hence, experiments need to be designed to verify the model results. For this purpose, the radar has occasionally been used in passive mode, monitoring the noise power received from both distinct cosmic noise sources like e.g. Cassiopeia A and Cygnus A, and the diffuse cosmic background noise. The analysis of the collected dataset enables us to verify beam forming and steering attempts. These results document the current status of the radar during its development and provide valuable information for further improvement.
  • Item
    MAARSY - the new MST radar on Andøya/Norway
    (Göttingen : Copernicus, 2010) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) is installing a new powerful VHF radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009/2010. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been operated continuously on Andøya for more than 10 years. The new system is a monostatic radar operated at 53.5MHz with an active phased array antenna consisting of 433 Yagi antennas. The 3- element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable output up to 2 kW. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum half power beam width of 3.6°, a maximum directive gain of 33.5 dB and a total transmitted peak power of approximately 800kW. The IF signals of each 7 transceivers connected to each 7 antennas arranged in a hexagon are combined to 61 receiving channels. Selected channels or combinations of IF signals are sent to a 16-channel data acquisition system with 25 m sampling resolution and 16-bit digitization specified which will be upgraded to 64 channels in the final stage. The high flexibility of the new system allows classical Doppler beam swinging as well as experiments with simultaneously formed multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatiotemporal resolution. © 2010 Author(s).
  • Item
    Horizontally resolved structures of radar backscatter from polar mesospheric layers
    (Göttingen : Copernicus, 2012) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.; Stober, G.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) installed a new powerful VHF radar on the North-Norwegian island Andøya (69.30 N, 16.04 E) from 2009 to 2011. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been in continuous operation on Andøya for more than 10 yr. MAARSY is a monostatic radar operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas each connected to its own transceiver with independent control of frequency, phase and power of the transmitted signal. This arrangement provides a very high flexibility of beam forming and beam steering. It allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatial-temporal resolution. The installation of the antenna was completed in August 2009. An initial expansion stage of 196 transceiver modules was installed in spring 2010, upgraded to 343 transceiver modules in December 2010 and the installation of the radar was completed in spring 2011. Beside standard observations of tropospheric winds and Polar Mesosphere Summer Echoes, multi-beam experiments using up to 91 beams quasi-simultaneously in the mesosphere have been carried out using the different expansion stages of the system during campaigns in 2010 and 2011. These results provided a first insight into the horizontal variability of Polar Mesosphere Summer and Winter Echoes in an area of about 80 km by 80 km with time resolutions between 3 and 9 min.
  • Item
    Electroless-deposited platinum antennas for wireless surface acousticwave sensors
    (Basel : MDPI AG, 2019) Brachmann, E.; Seifert, M.; Neumann, N.; Alshwawreh, N.; Uhlemann, M.; Menzel, S.B.; Acker, J.; Herold, S.; Hoffmann, V.; Gemming, T.
    In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.
  • Item
    Compact differential-fed planar filtering antennas
    (Basel : MDPI AG, 2019) Hassan, Emadeldeen; Martynenko, Denys; Wadbro, Eddie; Fischer, Gunter; Berggren, Martin
    This paper proposes novel low-profile differential-fed planar antennas with embedded sharp frequency selectively. The antennas are compact and easy to integrate with differential devices without matching baluns. The antenna design is formulated as a topology optimization problem, where requirements on impedance bandwidth, directivity, and filtering are used as the design objectives. The optimized antennas operate over the frequency band 6.0-8.5 GHz. The antennas have reflection coefficients below -15 dB, cross-polarization levels below -42 dB, a maximum gain of 6.0 ± 0.5 dB, and a uniform directivity over more than 130° beamwidth angle in the frequency band of interest. In addition, the antennas exhibit sharp roll-off between the operational band and frequencies around the 5.8GHz WiFi band and the 10 GHz X-band. One antenna has been fabricated with a good match between simulation and measurement results. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Compact helical antenna for smart implant applications
    (London : Nature Publishing Group, 2015) Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Makarov, Denys; Schmidt, Oliver G.
    Smart implants are envisioned to revolutionize personal health care by assessing physiological processes, for example, upon wound healing, and communicating these data to a patient or medical doctor. The compactness of the implants is crucial to minimize discomfort during and after implantation. The key challenge in realizing small-sized smart implants is high-volume cost- and time-efficient fabrication of a compact but efficient antenna, which is impedance matched to 50 Ω, as imposed by the requirements of modern electronics. Here, we propose a novel route to realize arrays of 5.5-mm-long normal mode helical antennas operating in the industry-scientific-medical radio bands at 5.8 and 2.4 GHz, relying on a self-assembly process that enables large-scale high-yield fabrication of devices. We demonstrate the transmission and receiving signals between helical antennas and the communication between an antenna and a smartphone. Furthermore, we successfully access the response of an antenna embedded in a tooth, mimicking a dental implant. With a diameter of ~0.2 mm, these antennas are readily implantable using standard medical syringes, highlighting their suitability for in-body implant applications.