Search Results

Now showing 1 - 3 of 3
  • Item
    The AMBRE Project: [Y/Mg] stellar dating calibration with Gaia
    (Les Ulis : EDP Sciences, 2019) Titarenko, A.; Recio-Blanco, A.; de Laverny, P.; Hayden, M.; Guiglion, G.
    Chemical abundance dating methods open new paths for temporal evolution studies of the Milky Way stellar populations. In this paper, we use a high spectral resolution database of turn-off stars in the solar neighbourhood to study the age dependence of the [Y/Mg] chemical abundance ratio. Our analysis reveals a clear correlation between [Y/Mg] and age for thin disc stars of different metallicities, in synergy with previous studies of solar-type stars. In addition, no metallicity dependence with stellar age is detected, allowing us to use the [Y/Mg] ratio as a reliable age proxy. Finally, the [Y/Mg]-age relation presents a discontinuity between thin and thick disc stars around 9-10 Gyr. For thick disc stars, the correlation has a different zero point and probably a steeper trend with age, reflecting the different chemical evolution histories of the two disc components.
  • Item
    The AMBRE Project: r-process elements in the Milky Way thin and thick discs
    (Les Ulis : EDP Sciences, 2018) Guiglion, G.; de Laverny, P.; Recio-Blanco, A.; Prantzos, N.
    Context. The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. There is a lack of statistically significant catalogues of such element abundances, especially those of the r-process. Aims. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. We also consider a pure s-process element, Ba, in order to disentangle the different nucleosynthesis processes. Methods. We take advantage of high-resolution FEROS, HARPS, and UVES spectra from the ESO archive in order to perform a homogeneous analysis on 6500 FGK Milky Way stars. The chemical analysis is performed thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). Based on the [α/Fe] ratio determined previously by the AMBRE Project, we chemically characterize the thin and the thick discs, and a metal-rich α-rich population. Results. First, we find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. Second, in thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd-Dy. The [r/Fe] ratio in the thin disc is roughly around +0.1 dex at solar metallicity, which is not the case for Ba. We also find that the α-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/α] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and α-elements. Conclusions. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. We emphasize that including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.
  • Item
    Chemical Abundances and Ages of the Bulge Stars in APOGEE High-velocity Peaks
    (London : Institute of Physics Publ., 2017) Zhou, Yingying; Shen, Juntai; Liu, Chao; Li, Zhao-Yu; Mao, Shude; Kunder, Andrea; Rich, R. Michael; Zasowski, G.; Fernandez-Trincado, J. G.; Majewski, Steven R.; Lin, Chien-Cheng; Geisler, Doug; Tang, Baitian; Villanova, S.; Roman-Lopes, A.; Schultheis, M.; Nidever, David L.; Meza, Andrés; Pan, Kaike; Bizyaev, D. V.
    A cold, high-velocity (HV, ∼200 km s-1) peak was first reported in several Galactic bulge fields based on the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) commissioning observations. Both the existence and the nature of the HV peak are still under debate. Here we revisit this feature with the latest APOGEE DR13 data. We find that most of the low-latitude bulge fields display a skewed Gaussian distribution with an HV shoulder. However, only 3 out of 53 fields show distinct HV peaks around 200 km s-1. The velocity distribution can be well described by Gauss-Hermite polynomials, except for the three fields showing clear HV peaks. We find that the correlation between the skewness parameter (h 3) and the mean velocity (), instead of a distinctive HV peak, is a strong indicator of the bar. It was recently suggested that the HV peak is composed of preferentially young stars. We choose three fields showing clear HV peaks to test this hypothesis using the metallicity, [α/M], and [C/N] as age proxies. We find that both young and old stars show HV features. The similarity between the chemical abundances of stars in the HV peaks and the main component indicates that they are not systematically different in terms of chemical abundance or age. In contrast, there are clear differences in chemical space between stars in the Sagittarius dwarf and the bulge stars. The strong HV peaks off-plane are still to be explained properly and could be different in nature.