Search Results

Now showing 1 - 5 of 5
  • Item
    Gaia Data Release 2 : Properties and validation of the radial velocities
    (Les Ulis : EDP Sciences, 2019) Katz, D.; Sartoretti, P.; Cropper, M.; Panuzzo, P.; Seabroke, G.M.; Viala, Y.; Benson, K.; Blomme, R.; Jasniewicz, G.; Jean-Antoine, A.; Huckle, H.; Smith, M.; Baker, S.; Crifo, F.; Damerdji, Y.; David, M.; Dolding, C.; Frémat, Y.; Gosset, E.; Guerrier, A.; Guy, L. P.; Haigron, R.; Janßen, K.; Marchal, O.; Plum, G.; Soubiran, C.; Thévenin, F.; Ajaj, M.; Allende Prieto, C.; Babusiaux, C.; Boudreault, S.; Chemin, L.; Delle Luche, C.; Fabre, C.; Gueguen, A.; Hambly, N. C.; Lasne, Y.; Meynadier, F.; Pailler, F.; Panem, C.; Royer, F.; Tauran, G.; Zurbach, C.; Zwitter, T.; Arenou, F.; Bossini, D.; Gerssen, J.; Gómez, A.; Lemaitre, V.; Leclerc, N.; Morel, T.; Munari, U.; Turon, C.; Vallenari, A.; Žerjal, M.
    Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550; 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G ≤ 12:5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s-1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS ∼ 9 mag and reaches about +500 m s-1 at GRVS = 11:75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s-1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS 2 [4; 8] mag, the precision, estimated using the full dataset, is in the range 220-350 m s-1, which is about three to five times more precise than the pre-launch specification of 1 km s-1. At the faint end, GRVS = 11:75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s-1, respectively.
  • Item
    Gaia Data Release 2 : Processing the spectroscopic data
    (Les Ulis : EDP Sciences, 2018) Sartoretti, P.; Katz, D.; Cropper, M.; Panuzzo, P.; Seabroke, G. M.; Viala, Y.; Benson, K.; Blomme, R.; Jasniewicz, G.; Jean-Antoine, A.; Huckle, H.; Smith, M.; Baker, S.; Crifo, F.; Damerdji, Y.; David, M.; Dolding, C.; Frémat, Y.; Gosset, E.; Guerrier, A.; Guy, L. P.; Haigron, R.; Janßen, K.; Marchal, O.; Plum, G.; Soubiran, C.; Thévenin, F.; Ajaj, M.; Allende Prieto, C.; Babusiaux, C.; Boudreault, S.; Chemin, L.; Delle Luche, C.; Fabre, C.; Gueguen, A.; Hambly, N. C.; Lasne, Y.; Meynadier, F.; Pailler, F.; Panem, C.; Riclet, F.; Royer, F.; Tauran, G.; Zurbach, C.; Zwitter, T.; Arenou, F.; Gomez, A.; Lemaitre, V.; Leclerc, N.; Morel, T.; Munari, U.; Turon, C.; Žerjal, M.
    Context. The Gaia Data Release 2 (DR2 ) contains the first release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims. This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2 . Methods. The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide first-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2 . Results. The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude GRVS ≤ 12 (i.e. brighter than V ∼ 13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in Gaia DR2, provides information about radial velocity variability. For the hottest (Te≥ 7000 K) and coolest (Te≤ 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. The radial velocities obtained for these stars were removed from DR2 . The pipeline also provides a first-order estimate of the performance obtained. The overall accuracy of radial velocity measurements is around ∼200-300 m s-1, and the overall precision is ∼1 km s-1; it reaches ∼200 m s-1 for the brightest stars.
  • Item
    Synthetic simulations of the extragalactic sky seen by eROSITA : I. Pre-launch selection functions from Monte-Carlo simulations
    (Les Ulis : EDP Sciences, 2018) Clerc, N.; Ramos-Ceja, M.E.; Ridl, J.; Lamer, G.; Brunner, H.; Hofmann, F.; Comparat, J.; Pacaud, F.; Käfer, F.; Reiprich, T.H.; Merloni, A.; Schmid, C.; Brand, T.; Wilms, J.; Friedrich, P.; Finoguenov, A.; Dauser, T.; Kreykenbohm, I.
    Context. Studies of galaxy clusters provide stringent constraints on models of structure formation. Provided that selection effects are under control, large X-ray surveys are well suited to derive cosmological parameters, in particular those governing the dark energy equation of state. Aims. We forecast the capabilities of the all-sky eROSITA (extended ROentgen Survey with an Imaging Telescope Array) survey to be achieved by the early 2020s. We bring special attention to modelling the entire chain from photon emission to source detection and cataloguing. Methods. The selection function of galaxy clusters for the upcoming eROSITA mission is investigated by means of extensive and dedicated Monte-Carlo simulations. Employing a combination of accurate instrument characterisation and a state-of-the-art source detection technique, we determine a cluster detection efficiency based on the cluster fluxes and sizes. Results. Using this eROSITA cluster selection function, we find that eROSITA will detect a total of approximately 105 clusters in the extra-galactic sky. This number of clusters will allow eROSITA to put stringent constraints on cosmological models. We show that incomplete assumptions on selection effects, such as neglecting the distribution of cluster sizes, induce a bias in the derived value of cosmological parameters. Conclusions. Synthetic simulations of the eROSITA sky capture the essential characteristics impacting the next-generation galaxy cluster surveys and they highlight parameters requiring tight monitoring in order to avoid biases in cosmological analyses.
  • Item
    The missing links of neutron star evolution in the eROSITA all-sky X-ray survey
    (Bristol : IOP Publ., 2017) Pires, A.M.
    The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star's lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.
  • Item
    Reconciling radio relic observations and simulations: The NVSS sample
    (Trieste : SISSA, 2016) Gelszinnis, Jakob; Hoeft, Matthias; Nuza, Sebastián E.
    The diffusive shock acceleration scenario is usually invoked to explain radio relics, although the detailed driving mechanism is still a matter of debate. Our aim is to constrain models for the origin of radio relics by comparing observed relic samples with simulated ones. Here we present a framework to homogeneously extract the whole sample of known radio relics from NVSS so that it can be used for comparison with cosmological simulations. In this way, we can better handle intrinsic biases in the analysis of the radio relic population. In addition, we show some properties of the resulting NVSS sample relics such as the correlation between relic shape and orientation with respect to the cluster. Also, we briefly discuss the typical relic surface brightness and its relation to projected cluster distance and relic angular sizes.