Search Results

Now showing 1 - 2 of 2
  • Item
    The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions
    (Göttingen : Copernicus GmbH, 2019) Banks, J.R.; Hünerbein, A.; Heinold, B.; Brindley, H.E.; Deneke, H.; Schepanski, K.
    Infrared "Desert Dust" composite imagery taken by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), onboard the Meteosat Second Generation (MSG) series of satellites above the equatorial East Atlantic, has been widely used for more than a decade to identify and track the presence of dust storms from and over the Sahara Desert, the Middle East, and southern Africa. Dust is characterised by distinctive pink colours in the Desert Dust false-colour imagery; however, the precise colour is influenced by numerous environmental properties, such as the surface thermal emissivity and skin temperature, the atmospheric water vapour content, the quantity and height of dust in the atmosphere, and the infrared optical properties of the dust itself. For this paper, simulations of SEVIRI infrared measurements and imagery have been performed using a modelling system, which combines dust concentrations simulated by the aerosol transport model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) with radiative transfer simulations from the RTTOV (Radiative Transfer for TOVS) model. Investigating the sensitivity of the synthetic infrared imagery to the environmental properties over a 6-month summertime period from 2011 to 2013, it is confirmed that water vapour is a major control on the apparent colour of dust, obscuring its presence when the moisture content is high. Of the three SEVIRI channels used in the imagery (8.7, 10.8, and 12.0 μm), the channel at 10.8 μm has the highest atmospheric transmittance and is therefore the most sensitive to the surface skin temperature. A direct consequence of this sensitivity is that the background desert surface exhibits a strong diurnal cycle in colour, with light blue colours possible during the day and purple hues prevalent at night. In dusty scenes, the clearest pink colours arise from high-altitude dust in dry atmospheres. Elevated dust influences the dust colour primarily by reducing the contrast in atmospheric transmittance above the dust layer between the SEVIRI channels at 10.8 and 12.0 μm, thereby boosting red and pink colours in the imagery. Hence, the higher the dust altitude, the higher the threshold column moisture needed for dust to be obscured in the imagery: for a sample of dust simulated to have an aerosol optical depth (AOD) at 550 nm of 2-3 at an altitude of 3-4 km, the characteristic colour of the dust may only be impaired when the total column water vapour is particularly moist ('39 mm). Meanwhile, dust close to the surface (altitude < 1 km) is only likely to be apparent when the atmosphere is particularly dry and when the surface is particularly hot, requiring column moisture/13 mm and skin temperatures '314 K, and is highly unlikely to be apparent when the skin temperature is/300 K. Such low-altitude dust will regularly be almost invisible within the imagery, since it will usually be beneath much of the atmospheric water vapour column. It is clear that the interpretation of satellite-derived dust imagery is greatly aided by knowledge of the background environment.
  • Item
    Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Hofmann, H.; Jäckel, S.; Jaenicke, R.; Knippertz, P.; Lieke, K.; Massling, A.; Petzold, A.; Schladitz, A.; Weinzierl, B.; Wiedensohler, A.; Zorn, S.; Weinbruch, S.
    During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).