Search Results

Now showing 1 - 1 of 1
  • Item
    A curvature-adapted anisotropic surface remeshing method
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Dassi, Franco; Si, Hang
    We present a new method for remeshing surfaces that respect the intrinsic anisotropy of the surfaces. In particular, we use the normal informations of the surfaces, and embed the surfaces into a higher dimensional space (here we use 6d). This allow us to form an isotropic mesh optimization problem in this embedded space. Starting from an initial mesh of a surface, we optimize the mesh by improving the mesh quality measured in the embedded space. The mesh is optimized by combining common local modifications operations, i.e., edge flip, edge contraction, vertex smoothing, and vertex insertion. All perations are applied directly on the 3d surface mesh. This method results a curvature-adapted mesh of the surface. This method can be easily adapted to mesh multi-patches surfaces, i.e., containing corner singularities and sharp features. The reliability and robustness of the proposed re-meshing technique is provided by a large number of examples including both implicit surfaces and CAD models.