Search Results

Now showing 1 - 10 of 233
  • Item
    Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2016) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michal; Studzian, Maciej; Appelhans, Dietmar; Voit, Brigitte; Pulaski, Lukasz; Klajnert-Maculewicz, Barbara
    Purpose: Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods: To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results: We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion: We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
  • Item
    The HIPPO Transducer YAP and Its Targets CTGF and Cyr61 Drive a Paracrine Signalling in Cold Atmospheric Plasma-Mediated Wound Healing
    (London: Hindawi, 2019) Shome, Debarati; von Woedtke, Thomas; Riedel, Katharina; Masur, Kai
    Reactive species play a pivotal role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signalling pathways that are involved in the homeostatic, inflammatory, proliferative, and remodelling phases of wound healing. The application of Cold Atmospheric Plasma (CAP) to the wound site produces a profusion of short- and long-lived reactive species that have been demonstrated to be effective in promoting wound healing; however, knowledge of the mechanisms underlying CAP-mediated wound healing remains scarce. To address this, an in vitro coculture model was used to study the effects of CAP on wound healing and on paracrine crosstalk between dermal keratinocytes and fibroblasts. Using this coculture model, we observed a stimulatory effect on the migration ability of HaCaT cells that were cocultured with dermal fibroblasts. Additionally, CAP treatment resulted in an upregulation of the HIPPO transcription factor YAP in HaCaTs and fibroblasts. Downstream effectors of the HIPPO signalling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts, and the administration of antioxidants could inhibit CAP-mediated wound healing and abrogate the gene expression of the HIPPO downstream effectors. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. An induction of CTGF and Cyr61 secretion was also observed upon CAP treatment in the fibroblast-conditioned media. Finally, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration. In summary, our results validated that CAP activates a regenerative signalling pathway at the onset of wound healing. Additionally, CAP also stimulated a reciprocal communication between dermal fibroblasts and keratinocytes, resulting in improved keratinocyte wound healing in coculture. © 2020 Debarati Shome et al.
  • Item
    Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction
    (San Francisco, California, US : PLOS, 2019) Saerchen, Emanuel; Liedtke-Gruener, Susann; Kopp, Maximilian; Heisterkamp, Alexander; Lubatschowski, Holger; Ripken, Tammo
    In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown.
  • Item
    Visualisation of HER2 homodimers in single cells from HER2 overexpressing primary formalin fixed paraffin embedded tumour tissue
    (London : BioMed Central, 2019) Peckys, D.B.; Hirsch, D.; Gaiser, T.; De, Jonge, N.
    Background: HER2 is considered as one of the most important, predictive biomarkers in oncology. The diagnosis of HER2 positive cancer types such as breast- and gastric cancer is usually based on immunohistochemical HER2 staining of tumour tissue. However, the current immunohistochemical methods do not provide localized information about HER2's functional state. In order to generate signals leading to cell growth and proliferation, the receptor spontaneously forms homodimers, a process that can differ between individual cancer cells. Materials and methods: HER2 overexpressing tumour cells were dissociated from formalin-fixed paraffin-embedded (FFPE) patient's biopsy sections, subjected to a heat-induced antigen retrieval procedure, and immobilized on microchips. HER2 was specifically labelled via a two-step protocol involving the incubation with an Affibody-biotin compound followed by the binding of a streptavidin coated quantum dot (QD) nanoparticle. Cells with membrane bound HER2 were identified using fluorescence microscopy, coated with graphene to preserve their hydrated state, and subsequently examined by scanning transmission electron microscopy (STEM) to obtain the locations at the single molecule level. Label position data was statistically analysed via the pair correlation function, yielding information about the presence of HER2 homodimers. Results: Tumour cells from two biopsies, scored HER2 3+, and a HER2 negative control sample were examined. The specific labelling protocol was first tested for a sectioned tissue sample of HER2-overexpressing tumour. Subsequently, a protocol was optimized to study HER2 homodimerization in single cells dissociated from the tissue section. Electron microscopy data showed membrane bound HER2 in average densities of 201-689 proteins/μm2. An automated, statistical analysis of well over 200,000 of measured protein positions revealed the presence of HER2 homodimers in 33 and 55% of the analysed images for patient 1 and 2, respectively. Conclusions: We introduced an electron microscopy method capable of measuring the positions of individually labelled HER2 proteins in patient tumour cells from which information about the functional status of the receptor was derived. This method could take HER2 testing a step further by examining HER2 homodimerization directly out of tumour tissue and may become important for adjusting a personalized antibody-based drug therapy. © 2019 The Author(s).
  • Item
    Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements
    (Bellingham, Wash. : SPIE, 2019) Stiebing, Clara; Schie, Iwan W.; Knorr, Florian; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Jahn, Izabella J.; Jahn, Martin; Kiliaan, Amanda J.; Ginner, Laurin; Lichtenegger, Antonia; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.
  • Item
    A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide
    (London [u.a.] : RSC, 2015) Mendes, Rafael Gregorio; Koch, Britta; Bachmatiuk, Alicja; Ma, Xing; Sanchez, Samuel; Damm, Christine; Schmidt, Oliver G.; Gemming, Thomas; Eckert, Jürgen; Rümmeli, Mark H.
    Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.
  • Item
    Effects of new beta-type Ti-40Nb implant materials, brain-derived neurotrophic factor, acetylcholine and nicotine on human mesenchymal stem cells of osteoporotic and non osteoporotic donors
    (San Francisco, CA : Public Library of Science (PLoS), 2018) Kauschke, V.; Gebert, A.; Calin, M.; Eckert, J.; Scheich, S.; Heiss, C.; Lips, K.S.
    Introduction Treatment of osteoporotic fractures is still challenging and an urgent need exists for new materials, better adapted to osteoporotic bone by adjusted Young’s modulus, appropriate surface modification and pharmaceuticals. Materials and methods Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-alu-minium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor, acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell imaging and immunofluorescence microscopy. Results Cell number of human mesenchymal stem cells of osteoporotic donors was increased after 14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium, together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-vanadium without pharmaceuticals. No significant increase was measured for ground or etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuticals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in non osteoporotic donors. Conclusion We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might be most suitable for subsequent in vivo testing.
  • Item
    Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation
    (Wuhan : Scientific Research Publishing, 2013) Veith, Michael; Dufloux, Cécile; Ghaemi, Soraya Rasi; Cenk, Aktas; Voelcker, Nicolas H.
    By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.
  • Item
    Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
    (Oxford : Oxford University Press, 2015) Oetjen, Janina; Veselkov, Kirill; Watrous, Jeramie; McKenzie, James S.; Becker, Michael; Hauberg-Lotte, Lena; Kobarg, Jan Hendrik; Strittmatter, Nicole; Mróz, Anna K.; Hoffmann, Franziska; Trede, Dennis; Palmer, Andrew; Schiffler, Stefan; Steinhorst, Klaus; Aichler, Michaela; Goldin, Robert; Guntinas-Lichius, Orlando; von Eggeling, Ferdinand; Thiele, Herbert; Maedler, Kathrin; Walch, Axel; Maass, Peter; Dorrestein, Pieter C.; Takats, Zoltan; Alexandrov, Theodore
    Background: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. Findings: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. Conclusions: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.
  • Item
    Discovery of chitin in skeletons of non-verongiid Red Sea demosponges
    (San Francisco, California, US : PLOS, 2018) Ehrlich, Hermann; Shaala, Lamiaa A.; Youssef, Diaa T. A.; Żółtowska- Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R.; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.