Search Results

Now showing 1 - 6 of 6
  • Item
    Concepts and characteristics of the ‘COST Reference Microplasma Jet’
    (Bristol : IOP Publ., 2016) Golda, J.; Held, J.; Redeker, B.; Konkowski, M.; Beijer, P.; Sobota, A.; Kroesen, G.; Braithwaite, N.S.J.; Reuter, S.; Turner, M.M.; Gans, T.; O’Connell, D.; Schulz-von der Gathen, V.
    Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense interest in the past few years. Many plasma sources of diverse design have been proposed for these applications, but the relationship between source characteristics and application performance is not well-understood, and indeed many sources are poorly characterized. This circumstance is an impediment to progress in application development. A reference source with well-understood and highly reproducible characteristics may be an important tool in this context. Researchers around the world should be able to compare the characteristics of their own sources and also their results with this device. In this paper, we describe such a reference source, developed from the simple and robust micro-scaled atmospheric pressure plasma jet (μ-APPJ) concept. This development occurred under the auspices of COST Action MP1101 'Biomedical Applications of Atmospheric Pressure Plasmas'. Gas contamination and power measurement are shown to be major causes of irreproducible results in earlier source designs. These problems are resolved in the reference source by refinement of the mechanical and electrical design and by specifying an operating protocol. These measures are shown to be absolutely necessary for reproducible operation. They include the integration of current and voltage probes into the jet. The usual combination of matching unit and power supply is replaced by an integrated LC power coupling circuit and a 5 W single frequency generator. The design specification and operating protocol for the reference source are being made freely available.
  • Item
    The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications
    (Bristol : IOP Publ., 2018-5-16) Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter
    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.
  • Item
    Nitric oxide density distributions in the effluent of an RF argon APPJ: Effect of gas flow rate and substrate
    (Bristol : IOP, 2014) Iseni, S.; Zhang, S.; Van Gessel, A.F.H.; Hofmann, S.; Van Ham, B.T.J.; Reuter, S.; Weltmann, K.-D.; Bruggeman, P.J.
    The effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.
  • Item
    Multimodal Nonlinear Microscopy for Therapy Monitoring of Cold Atmospheric Plasma Treatment
    (Basel : MDPI, 2019) Meyer, Tobias; Bae, Hyeonsoo; Hasse, Sybille; Winter, Jörn; von Woedtke, Thomas; Schmitt, Michael; Weltmann, Klaus-Dieter; Popp, Jürgen
    Here we report on a non-linear spectroscopic method for visualization of cold atmospheric plasma (CAP)-induced changes in tissue for reaching a new quality level of CAP application in medicine via online monitoring of wound or cancer treatment. A combination of coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence lifetime imaging (2P-FLIM) and second harmonic generation (SHG) microscopy has been used for non-invasive and label-free detection of CAP-induced changes on human skin and mucosa samples. By correlation with histochemical staining, the observed local increase in fluorescence could be assigned to melanin. CARS and SHG prove the integrity of the tissue structure, visualize tissue morphology and composition. The influence of plasma effects by variation of plasma parameters e.g., duration of treatment, gas composition and plasma source has been evaluated. Overall quantitative spectroscopic markers could be identified for a direct monitoring of CAP-treated tissue areas, which is very important for translating CAPs into clinical routine.
  • Item
    Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing
    (Wyoming, NSW : Ivyspring, 2019) Schmidt, Anke; Woedtke, Thomas, von; Vollmar, Brigitte; Hasse, Sybille; Bekeschus, Sander
    Wound healing is strongly associated with the presence of a balanced content of reactive species in which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing due to its ability to deliver a beneficial mixture of reactive species directly to the cells. Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence analysis was used to illustrate and quantified microvascular features. Results: Plasma exerted significant effects on wound healing in mice, including the promotion of granulation and reepithelialization as a consequence of the migration of skin cells, the balance of antioxidant and inflammatory response, and the early induction of macrophage and neutrophil recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The cellular redox homeostasis was maintained and cells were defended from damage by a strong modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling. Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in chronic wound healing.
  • Item
    Strategische Geräteinvestitionen für das Zentrum für Innovationskompetenz plasmatis : Abschlussbericht zum Forschungsvorhaben
    (Hannover : Technische Informationsbibliothek (TIB), 2011) Weltmann, Klaus-Dieter
    [no abstract available]