Search Results

Now showing 1 - 10 of 15
  • Item
    Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems
    (London : Nature Publishing Group, 2019) Haehnel, V.; Khan, F.Z.; Mutschke, G.; Cierpka, C.; Uhlemann, M.; Fritsch, I.
    A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN) 6 ] 3− /[Fe(CN) 6 ] 4− performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized.
  • Item
    Triplet superconductivity in coupled odd-gon rings
    (London : Nature Publishing Group, 2019) Reja, S.; Nishimoto, S.
    Shedding light on the nature of spin-triplet superconductivity has been a long-standing quest in condensed matter physics since the discovery of superfluidity in liquid 3 He. Nevertheless, the mechanism of spin-triplet pairing is much less understood than that of spin-singlet pairing explained by the Bardeen-Cooper-Schrieffer theory or even observed in high-temperature superconductors. Here we propose a versatile mechanism for spin-triplet superconductivity which emerges through a melting of macroscopic spin polarization stabilized in weakly coupled odd-gon (e.g., triangle, pentagon, etc) systems. We demonstrate the feasibility of sustaining spin-triplet superconductivity with this mechanism by considering a new class of quasi-one-dimensional superconductors A 2 Cr 3 As 3 (A = K, Rb, and Cs). Furthermore, we suggest a simple effective model to easily illustrate the adaptability of the mechanism to general systems consisting of odd-gon units. This mechanism provides a rare example of superconductivity from on-site Coulomb repulsion.
  • Item
    Tailoring optical properties and stimulated emission in nanostructured polythiophene
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Portone, Alberto; Ganzer, Lucia; Branchi, Federico; Ramos, Rodrigo; Caldas, Marília J.; Pisignano, Dario; Molinari, Elisa; Cerullo, Giulio; Persano, Luana; Prezzi, Deborah; Virgili, Tersilla
    Polythiophenes are the most widely utilized semiconducting polymers in organic electronics, but they are scarcely exploited in photonics due to their high photo-induced absorption caused by interchain polaron pairs, which prevents the establishment of a window of net optical gain. Here we study the photophysics of poly(3-hexylthiophene) configured with different degrees of supramolecular ordering, spin-coated thin films and templated nanowires, and find marked differences in their optical properties. Transient absorption measurements evidence a partially-polarized stimulated emission band in the nanowire samples, in contrast with the photo-induced absorption band observed in spin-coated thin films. In combination with theoretical modeling, our experimental results reveal the origin of the primary photoexcitations dominating the dynamics for different supramolecular ordering, with singlet excitons in the nanostructured samples superseding the presence of polaron pairs, which are present in the disordered films. Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observation of optical gain opens the possibility to the use of polythiophene nanostructures as building blocks of organic optical amplifiers and active photonic devices. © 2019, The Author(s).
  • Item
    Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D1-line
    (London : Nature Publishing Group, 2019) Kroh, T.; Wolters, J.; Ahlrichs, A.; Schell, A.W.; Thoma, A.; Reitzenstein, S.; Wildmann, J.S.; Zallo, E.; Trotta, R.; Rastelli, A.; Schmidt, O.G.; Benson, O.
    Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, “slow light” and “fast light” behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.
  • Item
    Molecular Characterization and Comparative Genomics of Clinical Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains in Sweden
    (Berlin : Nature Publishing, 2019) Bai, Xiangning; Zhang, Ji; Ambikan, Anoop; Jernberg, Cecilia; Ehricht, Ralf; Scheutz, Flemming; Xiong, Yanwen; Matussek, Andreas
    Hybrid E. coli pathotypes are representing emerging public health threats with enhanced virulence from different pathotypes. Hybrids of Shiga toxin-producing and enterotoxigenic E. coli (STEC/ETEC) have been reported to be associated with diarrheal disease and hemolytic uremic syndrome (HUS) in humans. Here, we identified and characterized four clinical STEC/ETEC hybrids from diarrheal patients with or without fever or abdominal pain and healthy contact in Sweden. Rare stx2 subtypes were present in STEC/ETEC hybrids. Stx2 production was detectable in stx2a and stx2e containing strains. Different copies of ETEC virulence marker, sta gene, were found in two hybrids. Three sta subtypes, namely, sta1, sta4 and sta5 were designated, with sta4 being predominant. The hybrids represented diverse and rare serotypes (O15:H16, O187:H28, O100:H30, and O136:H12). Genome-wide phylogeny revealed that these hybrids exhibited close relatedness with certain ETEC, STEC/ETEC hybrid and commensal E. coli strains, implying the potential acquisition of Stx-phages or/and ETEC virulence genes in the emergence of STEC/ETEC hybrids. Given the emergence and public health significance of hybrid pathotypes, a broader range of virulence markers should be considered in the E. coli pathotypes diagnostics, and targeted follow up of cases is suggested to better understand the hybrid infection.
  • Item
    Effect of fluoride mouthrinses and stannous ions on the erosion protective properties of the in situ pellicle
    (Berlin : Springer Nature, 2019) Kensche, A.; Buschbeck, E.; König, B.; Koch, M.; Kirsch, J.; Hannig, C.; Hannig, M.
    The particular feature of this study is the investigation of effects of pure fluoride- or stannous ions based mouthrinses on the erosion protective properties and the ultrastructure of the in situ pellicle (12 volunteers). Experimental solutions were prepared either from 500 ppm NaF, SMFP, AmF or SnF 2 or 1563 ppm SnCl 2 , respectively. After 1 min of in situ pellicle formation on bovine enamel slabs, rinses with one of the preparations were performed for 1 min and intraoral specimens’ exposure was continued for 28 min. Native enamel slabs and rinses with bidestilled water served as controls. After oral exposure, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s and kinetics of calcium- and phosphate release were measured photometrically; representative samples were analysed by TEM and EDX. All mouthrinses reduced mineral loss compared to the native 30-min pellicle. The effect was pH-dependent and significant at all pH values only for the tin-containing mouthrinses. No significant differences were observed between the SnF 2 - and the SnCl 2 -containing solutions. TEM/EDX confirmed ultrastructural pellicle modifications. SnF 2 appears to be the most effective type of fluoride to prevent erosive enamel demineralisation. The observed effects primarily have to be attributed to the stannous ions’ content. © 2019, The Author(s).
  • Item
    Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Talalaev, Vadim; Kryzhanovskaya, Natalia; Tomm, Jens W.; Rutckaia, Viktoriia; Schilling, Joerg; Zhukov, Alexey
    The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.0–1.3 μm. This emission was coupled to whispering gallery modes (WGMs) of a 6 μm microdisk resonator and studied at room temperature by steady-state and time-resolved micro-photoluminescence. We demonstrate a cascade development of lasing arising from the ladder of quantum dot states, and compare the lasing behavior of ground and excited state emission. While the lasing threshold is being increased from the ground state to the highest excited state, the dynamic behavior is improved: turn-on times and lifetimes of WGMs become shorter paving the way towards high frequency direct driven microlasers. © 2019, The Author(s).
  • Item
    A bismuth triiodide monosheet on Bi 2 Se 3 (0001)
    (London : Nature Publishing Group, 2019) Polyakov, A.; Mohseni, K.; Castro, G.R.; Rubio-Zuazo, J.; Zeugner, A.; Isaeva, A.; Chen, Y.-J.; Tusche, C.; Meyerheim, H.L.
    A stable BiI 3 monosheet has been grown for the first time on the (0001) surface of the topological insulator Bi 2 Se 3 as confirmed by scanning tunnelling microscopy, surface X-ray diffraction, and X-ray photoemision spectroscopy. BiI 3 is deposited by molecular beam epitaxy from the crystalline BiTeI precursor that undergoes decomposition sublimation. The key fragment of the bulk BiI 3 structure, a∞2[I—Bi—I] layer of edge-sharing BiI 6 octahedra, is preserved in the ultra-thin film limit, but exhibits large atomic relaxations. The stacking sequence of the trilayers and alternations of the Bi—I distances in the monosheet are the same as in the bulk BiI 3 structure. Momentum resolved photoemission spectroscopy indicates a direct band gap of 1.2 eV. The Dirac surface state is completely destroyed and a new flat band appears in the band gap of the BiI 3 film that could be interpreted as an interface state.
  • Item
    Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method
    (London : Nature Publishing Group, 2019) Nečas, D.; Klapetek, P.; Neu, V.; Havlíček, M.; Puttock, R.; Kazakova, O.; Hu, X.; Zajíčková, L.
    Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.
  • Item
    Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields
    (London : Nature Publishing Group, 2019) Hayes, P.; Jovičević Klug, M.; Toxværd, S.; Durdaut, P.; Schell, V.; Teplyuk, A.; Burdin, D.; Winkler, A.; Weser, R.; Fetisov, Y.; Höft, M.; Knöchel, R.; McCord, J.; Quandt, E.
    Magnetoelectric (ME) thin film composites consisting of sputtered piezoelectric (PE) and magnetostrictive (MS) layers enable for measurements of magnetic fields passively, i.e. an AC magnetic field directly generates an ME voltage by mechanical coupling of the MS deformation to the PE phase. In order to achieve high field sensitivities a magnetic bias field is necessary to operate at the maximum piezomagnetic coefficient of the MS phase, harnessing mechanical resonances further enhances this direct ME effect size. Despite being able to detect very small AC field amplitudes, exploiting mechanical resonances directly, implies a limitation to available signal bandwidth along with the inherent inability to detect DC or very low frequency magnetic fields. The presented work demonstrates converse ME modulation of thin film Si cantilever composites of mesoscopic dimensions (25 mm × 2.45 mm × 0.35 mm), employing piezoelectric AlN and magnetostrictive FeCoSiB films of 2 µm thickness each. A high frequency mechanical resonance at about 515 kHz leads to strong induced voltages in a surrounding pickup coil with matched self-resonance, leading to field sensitivities up to 64 kV/T. A DC limit of detection of 210 pT/Hz1/2 as well as about 70 pT/Hz1/2 at 10 Hz, without the need for a magnetic bias field, pave the way towards biomagnetic applications.