Search Results

Now showing 1 - 10 of 13
  • Item
    PH-Responsive Biohybrid Carrier Material for Phenol Decontamination in Wastewater
    (Columbus, Ohio : American Chemical Soc., 2018) Pretscher, Martin; Pineda-Contreras, Beatriz A.; Kaiser, Patrick; Reich, Steffen; Schöbel, Judith; Kuttner, Christian; Freitag, Ruth; Fery, Andreas; Schmalz, Holger; Agarwal, Seema
    Smart polymers are a valuable platform to protect and control the activity of biological agents over a wide range of conditions, such as low pH, by proper encapsulation. Such conditions are present in olive oil mill wastewater with phenol as one of the most problematic constituents. We show that elastic and pH-responsive diblock copolymer fibers are a suitable carrier for Corynebacterium glutamicum, i.e., bacteria which are known for their ability to degrade phenol. Free C. glutamicum does not survive low pH conditions and fails to degrade phenol at low pH conditions. Our tea-bag like biohybrid system, where the pH-responsive diblock copolymer acts as a protecting outer shell for the embedded bacteria, allows phenol degradation even at low pH. Utilizing a two-step encapsulation process, planktonic cells were first encapsulated in poly(vinyl alcohol) to protect the bacteria against the organic solvents used in the second step employing coaxial electrospinning.
  • Item
    Liquid-phase electron microscopy of molecular drug response in breast cancer cells reveals irresponsive cell subpopulations related to lack of HER2 homodimers
    (Bethesda, Md. : American Society for Cell Biology, 2017) Peckys, Diana B.; Korf, Ulrike; Wiemann, Stefan; de Jonge, Niels
    The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Because drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells and compared the results with those of a drugresistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down-regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug and thus point toward a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity.
  • Item
    Real-time image processing for label-free enrichment of Actinobacteria cultivated in picolitre droplets
    (London [u.a.] : Royal Society of Chemistry, 2013) Zang, E.; Brandes, S.; Tovar, M.; Martin, K.; Mech, F.; Horbert, P.; Henkel, T.; Figge, M.T.; Roth, M.
    The majority of today's antimicrobial therapeutics is derived from secondary metabolites produced by Actinobacteria. While it is generally assumed that less than 1% of Actinobacteria species from soil habitats have been cultivated so far, classic screening approaches fail to supply new substances, often due to limited throughput and frequent rediscovery of already known strains. To overcome these restrictions, we implement high-throughput cultivation of soil-derived Actinobacteria in microfluidic pL-droplets by generating more than 600000 pure cultures per hour from a spore suspension that can subsequently be incubated for days to weeks. Moreover, we introduce triggered imaging with real-time image-based droplet classification as a novel universal method for pL-droplet sorting. Growth-dependent droplet sorting at frequencies above 100 Hz is performed for label-free enrichment and extraction of microcultures. The combination of both cultivation of Actinobacteria in pL-droplets and real-time detection of growing Actinobacteria has great potential in screening for yet unknown species as well as their undiscovered natural products.
  • Item
    Thermal activation of catalytic microjets in blood samples using microfluidic chips
    (Cambridge : Royal Society of Chemistry, 2013) Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia S.; Sanchez, Samuel; Schmidt, Oliver G.
    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.
  • Item
    Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe
    (Washington : National Academy of Sciences, 2019) Rößler, S.; Koz, C.; Wang, Z.; Skourski, Y.; Doerr, M.; Kasinathan, D.; Rosner, H.; Schmidt, M.; Schwarz, U.; Rößler, U.K.; Wirth, S.
    A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
  • Item
    Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips
    (Cambridge : Royal Society of Chemistry, 2014) Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia S.; Sanchez, Samuel; Schmidt, Oliver G.
    We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion.
  • Item
    Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system
    (Cambridge : Royal Society of Chemistry, 2014) Restrepo-Pérez, Laura; Meyer, Anne K.; Helbig, Linda; Sanchez, Samuel; Schmidt, Oliver G.
    Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.
  • Item
    Opening up knowledge systems for better responses to global environmental change
    (Amsterdam [u.a.] : Elsevier, 2013) Cornell, S.; Berkhout, F.; Tuinstra, W.; Tàbara, J.D.; Jäger, J.; Chabay, I.; de Wit, B.; Langlais, R.; Mills, D.; Moll, P.; Otto, I.M.; Petersen, A.; Pohl, C.; van Kerkhoff, L.
    Linking knowledge with action for effective societal responses to persistent problems of unsustainability requires transformed, more open knowledge systems. Drawing on a broad range of academic and practitioner experience, we outline a vision for the coordination and organization of knowledge systems that are better suited to the complex challenges of sustainability than the ones currently in place. This transformation includes inter alia: societal agenda setting, collective problem framing, a plurality of perspectives, integrative research processes, new norms for handling dissent and controversy, better treatment of uncertainty and of diversity of values, extended peer review, broader and more transparent metrics for evaluation, effective dialog processes, and stakeholder participation. We set out institutional and individual roadmaps for achieving this vision, calling for well-designed, properly resourced, longitudinal, international learning programs.
  • Item
    Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations
    (Amsterdam [u.a.] : Elsevier Science, 2018) Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; Gu, J.; Flentje, H.; Briel, B.; Asbac, C.; Kaminski, H.; Ries, L.; Sohme, R.; Gerwig, H.; Wirtz, K.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ma, N.; Wiedensohler, A.
    This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors
  • Item
    Insulin adsorption to catheter materials used for intensive insulin therapy in critically ill patients: Polyethylene versus polyurethane - possible cause of variation in glucose control?
    (Sharjah : Bentham Science Publishers B.V., 2014) Ley, S.C.; Ammann, J.; Herder, C.; Dickhaus, T.; Hartmann, M.; Kindgen-Milles, D.
    Introduction: Restoring and maintaining normoglycemia by intensified insulin therapy in critically ill patients is a matter of ongoing debate since the risk of hypoglycemia may outweigh positive effects on morbidity and mortality. In this context, adsorption of insulin to different catheter materials may contribute to instability of glucose control. We studied the adsorption of insulin to different tubing materials in vitro and the effects on glycemic control in vivo. Materials and Methods: In vitro experiments: A syringe pump was filled with 50 IU insulin diluted to 50 ml saline. A flow of 2 ml/h was perfused through polyethylene (PET) or polyurethane (PUR) tubing. Insulin concentrations were measured at the end of the tube for 24 hours using Bradford's protein assay. In vivo study: In a randomized double-blinded cross-over design, 10 intensive care patients received insulin via PET and PUR tubes for 24 hours each, targeting blood glucose levels of 80-150 mg/dl. We measured blood glucose levels, the insulin dose required to maintain target levels, and serum insulin and C-peptide levels. Results: In vitro experiments: After the start of the insulin infusion, only 20% (median, IQR 20-27) (PET) and 22% (IQR 16-27) (PUR) of the prepared insulin concentration were measured at the end of the 2 meter tubing. Using PET, after one hour infusion the concentration increased to 34% (IQR 29-36) and did not increase significantly during the next 24 hours (39% (IQR 39-40)). Using PUR, higher concentrations were detected than for PET at every measurement from 1 hour (82% (IQR 70-86)) to 24 hours (79% (IQR 64-87)). In vivo study: Glycemic control was effective and not different between groups. Significantly higher volumes of insulin solution had to be infused with PET compared to PUR (median PET 70.0 (IQR 56-82) ml vs. PUR 42 (IQR 31-63) ml; p=0.0015). Serum insulin concentrations did not decrease significantly one hour after changing to PET or PUR tubing. Conclusion: Polyurethane tubing systems allow application of insulin with significantly lower adsorption rates than polyethylene tubing systems. As a consequence, less insulin solution has to be infused to patients for effective blood glucose control. Tubing material of the insulin infusion may be crucial for safe and effective glycemic control in critically ill patients.