Search Results

Now showing 1 - 10 of 22
  • Item
    Resonant terahertz light absorption by virtue of tunable hybrid interface phonon-plasmon modes in semiconductor nanoshells
    (Basel : MDPI AG, 2019) Nika, D.L.; Pokatilov, E.P.; Fomin, V.M.; Devreese, J.T.; Tempere, J.
    Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies.
  • Item
    Carbon nanostructures as a multi-functional platform for sensing applications
    (Basel : MDPI AG, 2018) Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M.H.
    The various forms of carbon nanostructures are providing extraordinary new opportunities that can revolutionize the way gas sensors, electrochemical sensors and biosensors are engineered. The great potential of carbon nanostructures as a sensing platform is exciting due to their unique electrical and chemical properties, highly scalable, biocompatible and particularly interesting due to the almost infinite possibility of functionalization with a wide variety of inorganic nanostructured materials and biomolecules. This opens a whole new pallet of specificity into sensors that can be extremely sensitive, durable and that can be incorporated into the ongoing new generation of wearable technology. Within this context, carbon-based nanostructures are amongst the most promising structures to be incorporated in a multi-functional platform for sensing. The present review discusses the various 1D, 2D and 3D carbon nanostructure forms incorporated into different sensor types as well as the novel functionalization approaches that allow such multi-functionality.
  • Item
    A magnetocaloric booster unit for energy-efficient air-conditioning
    (Basel : MDPI AG, 2019) Krautz, M.; Beyer, M.; Jäschke, C.; Schinke, L.; Waske, A.; Seifert, J.
    A concept for the application of a magnetocaloric device in energy-efficient air conditioners is introduced. In order to evaluate this concept, a test stand has been developed equipped with a magnetic field source providing about a 1.5-T flux density change into which different regenerator geometries can be implemented and evaluated. A processing route for the production of profiled magnetocaloric LaFeSiMn-based composite plates by tape casting is presented. The processed plates show a maximum isothermal entropy change of about 3.8 J kg −1 K −1 at a magnetic field change of 1.5 T at 285 K. The hydraulic and thermal performance of regenerator geometries that can be realized by profiled plates is assessed by calculations. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells
    (Basel : MDPI AG, 2019) Cirillo, G.; Vittorio, O.; Kunhardt, D.; Valli, E.; Voli, F.; Farfalla, A.; Curcio, M.; Spizzirri, U.G.; Hampel, S.
    A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
  • Item
    Mo-La2O3 multilayer metallization systems for high temperature surface acoustic wave sensor devices
    (Basel : MDPI AG, 2019) Menzel, S.B.; Seifert, M.; Priyadarshi, A.; Rane, G.K.; Park, E.; Oswald, S.; Gemming, T.
    Developing advanced thin film materials is the key challenge in high-temperature applications of surface acoustic wave sensor devices. One hundred nanometer thick (Mo-La2O3) multilayer systems were fabricated at room temperature on thermally oxidized (100) Si substrates (SiO2/Si) to study the effect of lanthanum oxide on the electrical resistivity of molybdenum thin films and their high-temperature stability. The multilayer systems were deposited by the magnetron sputter deposition of extremely thin (≤1 nm) La interlayers in between adjacent Mo layers. After deposition of each La layer the process was interrupted for 25 to 60 min to oxidize the La using the residual oxygen in the high vacuum of the deposition chamber. The samples were annealed at 800 °C in high vacuum for up to 120 h. In case of a 1 nm thick La interlayer in-between the Mo a continuous layer of La2O3 is formed. For thinner La layers an interlayer between adjacent Mo layers is observed consisting of a (La2O3-Mo) mixed structure of molybdenum and nm-sized lanthanum oxide particles. Measurements show that the (Mo-La2O3) multilayer systems on SiO2/Si substrates are stable at least up to 800 °C for 120 h in high vacuum conditions.
  • Item
    Electroless-deposited platinum antennas for wireless surface acousticwave sensors
    (Basel : MDPI AG, 2019) Brachmann, E.; Seifert, M.; Neumann, N.; Alshwawreh, N.; Uhlemann, M.; Menzel, S.B.; Acker, J.; Herold, S.; Hoffmann, V.; Gemming, T.
    In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.
  • Item
    Ti-Al composite wires with high specific strength
    (Basel : MDPI AG, 2011) Marr, T.; Freudenberger, J.; Seifert, D.; Klauß, H.; Romberg, J.; Okulov, I.; Scharnweber, J.; Eschke, A.; Oertel, C.-G.; Skrotzki, W.; Kühn, U.; Eckert, J.; Schultz, L.
    An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
  • Item
    Preparation and cycling performance of iron or iron oxide containing amorphous Al-Li alloys as electrodes
    (Basel : MDPI AG, 2014) Thoss, F.; Giebeler, L.; Weißer, K.; Feller, J.; Eckert, J.
    Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.
  • Item
    Production and characterization of brass-matrix composites reinforced with Ni59Zr20Ti16Si2Sn3 glassy particles
    (Basel : MDPI AG, 2012) Kim, J.Y.; Scudino, S.; Kühn, U.; Kim, B.S.; Lee, M.H.; Eckert, J.
    Brass-matrix composites reinforced with 40 and 60 vol.% of Ni59Zr20Ti16Si2Sn3 glassy particles were produced by powder metallurgy. The crystallization behavior and the temperature dependence of the viscosity of the glass reinforcement were studied in detail to select the proper sintering parameters in order to avoid crystallization of the glassy phase during consolidation. The brass-glass powder mixtures were prepared through manual blending as well as by ball milling to analyze the effect of the matrix ligament size on the mechanical properties of the composites. The powder mixtures were then consolidated into highly-dense bulk specimens at temperatures within the supercooled liquid region by hot pressing followed by hot extrusion. The preparation of the powder mixtures has a strong influence on the mechanical behavior of the composites. The strength increases from 500 MPa for pure brass to 740 and 925 MPa for the blended composites with 40 and 60vol.% of glass reinforcement, while the strength increases to 1,240 and 1,640 MPa for the corresponding composites produced by ball milling. Modeling of the mechanical properties indicates that this behavior is related to the reduced matrix ligament size characterizing the milled composites.