Search Results

Now showing 1 - 10 of 98
  • Item
    Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements
    (Bristol : IOP Publishing, 2014) Ziemak, Steven; Kirshenbaum, K.; Saha, S.R.; Hu, R.; Reid, J.-Ph.; Gordon, R.; Taillefer, L.; Evtushinsky, D.; Thirupathaiah, S.; Büchner, B.; Borisenko, S.V.; Ignatov, A.; Kolchmeyer, D.; Blumberg, G.; Paglione, J.
    Thermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting energy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the $T\to 0$ limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of Tc = 23 K, revealing an isotropic gap of magnitude $\sim 3$ meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below Tc. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point-contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe2−xPtxAs2 doping system and how this relates to similar substituted iron pnictides.
  • Item
    Atomically controlled CVD processing of group IV semiconductors for ultra-large-scale integrations
    (Bristol : IOP Publishing, 2012) Murota, Junichi; Sakuraba, Masao; Tillack, Bernd
    One of the main requirements for ultra-large-scale integrations (ULSIs) is atomic-order control of process technology. Our concept of atomically controlled processing is based on atomic-order surface reaction control by CVD. By ultraclean low-pressure CVD using SiH4 and GeH4 gases, high-quality low-temperature epitaxial growth of Si1−xGex (100) (x=0–1) with atomically flat surfaces and interfaces on Si(100) is achieved. Self-limiting formation of 1–3 atomic layers of group IV or related atoms in the thermal adsorption and reaction of hydride gases on Si1-xGex (100) are generalized based on the Langmuir-type model. By the Si epitaxial growth on top of the material already-formed on Si(100), N, B and C atoms are confined within about a 1 nm thick layer. In Si cap layer growth on the P atomic layer formed on Si1−xGex (100), segregation of P atoms is suppressed by using Si2H6 instead of SiH4 at a low temperature of 450 °C. Heavy C atomic-layer doping suppresses strain relaxation as well as intermixing between Si and Ge at the Si1−xGex/Si heterointerface. It is confirmed that higher carrier concentration and higher carrier mobility are achieved by atomic-layer doping. These results open the way to atomically controlled technology for ULSIs.
  • Item
    The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glasses
    (Bristol : IOP Publishing, 2019) Wei, Qi; Gostin, Petre Flaviu; Addison, Owen; Reed, Daniel; Calin, Mariana; Bera, Supriya; Ramasamy, Parthiban; Davenport, Alison
    TiZrCuPdGa metallic glasses are under consideration for small dental biomedical implants. There is interest in replacing some of the Cu with Ga to improve the glass-forming ability and biocompatibility. Ti40Zr10Cu36-xPd14Gax (x = 0, 1, 2, 4, 8 and 10 at.%) metallic glasses in rod and ribbon forms were fabricated by mould casting and melt spinning, respectively, and electrochemically tested in a 0.9wt.% NaCl (0.154 M) solution. It has been shown that for both rod and ribbon samples Ga levels up to 8% have no significant effect on passive current density, pitting potential or cathodic reactivity in 0.9% NaCl at 37°C. Different pitting potential and corrosion potential values were found when ribbon and rod samples of the same composition were compared for all compositions apart from the one containing the highest Ga level (10%). This was attributed to structural relaxation occurring as a result of the slower cooling rates during casting rods compared with melt-spinning ribbons. Substitution of Ga for Cu in these metallic glasses therefore expected to have no significant effect on corrosion susceptibility. © The Author(s) 2019.
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.
  • Item
    Force microscopy of layering and friction in an ionic liquid
    (Bristol : IOP Publishing, 2014) Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip–sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
  • Item
    The 2018 correlative microscopy techniques roadmap
    (Bristol : IOP Publishing, 2018) Ando, Toshio; Bhamidimarri, Satya Prathyusha; Brending, Niklas; Colin-York, H; Collinson, Lucy; De Jonge, Niels; de Pablo, P J; Debroye, Elke; Eggeling, Christian; Franck, Christian; Fritzsche, Marco; Gerritsen, Hans; Giepmans, Ben N G; Grunewald, Kay; Hofkens, Johan; Hoogenboom, Jacob P; Janssen, Kris P F; Kaufmann, Rainer; Klumpermann, Judith; Kurniawan, Nyoman; Kusch, Jana; Liv, Nalan; Parekh, Viha; Peckys, Diana B; Rehfeldt, Florian; Reutens, David C; Roeffaers, Maarten B J; Salditt, Tim; Schaap, Iwan A T; Schwarz, Ulrich S; Verkade, Paul; Vogel, Michael W; Wagner, Richard; Winterhalter, Mathias; Yuan, Haifeng; Zifarelli, Giovanni
    Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell–cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure–function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
  • Item
    Improved Capacitive Deionization Performance of Mixed Hydrophobic / Hydrophilic Activated Carbon Electrodes
    (Bristol : IOP Publishing, 2016) Aslan, Mesut; Zeiger, Marco; Jäckel, Nicolas; Grobelsek, Ingrid; Weingarth, Daniel; Presser, Volker
    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limit the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2 activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3/g and 2113 m2/g, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to still capitalize the improved pore structure by admixing as received (more hydrophilic) carbon with CO2 treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates in an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg/g SAC for an optimized 2:1 mixture (by mass).
  • Item
    Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors
    (Bristol : IOP Publishing, 2019) George, Antony; Neumann, Christof; Kaiser, David; Mupparapu, Rajeshkumar; Lehnert, Tibor; Hübner, Uwe; Tang, Zian; Winter, Andreas; Kaiser, Ute; Staude, Isabelle; Turchanin, Andrey
    Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.
  • Item
    Balancing trade-offs between ecosystem services in Germany's forests under climate change
    (Bristol : IOP Publishing, 2018) Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P.O.
    Germany's forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services 'carbon' and 'timber' benefit from climate change, while 'water' and 'habitat' lose. We detect clear trade-offs between 'timber' and all other ecosystem services, as well as synergies between 'habitat' and 'carbon'. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil 'habitat' and 'carbon' services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.
  • Item
    National contributions for decarbonizing the world economy in line with the G7 agreement
    (Bristol : IOP Publishing, 2016) du Pont, Yann Robiou; Jeffery, M. Louise; Gütschow, Johannes; Christoff, Peter; Meinshausen, Malte
    In June 2015, the G7 agreed to two global mitigation goals: 'a decarbonization of the global economy over the course of this century' and 'the upper end of the latest Intergovernmental Panel on Climate Change (IPCC) recommendation of 40%–70% reductions by 2050 compared to 2010'. These IPCC recommendations aim to preserve a likely (>66%) chance of limiting global warming to 2 °C but are not necessarily consistent with the stronger ambition of the subsequent Paris Agreement of 'holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels'. The G7 did not specify global or national emissions scenarios consistent with its own agreement. Here we identify global cost-optimal emissions scenarios from Integrated Assessment Models that match the G7 agreement. These scenarios have global 2030 emissions targets of 11%–43% below 2010, global net negative CO2 emissions starting between 2056 and 2080, and some exhibit net negative greenhouse gas emissions from 2080 onwards. We allocate emissions from these global scenarios to countries according to five equity approaches representative of the five equity categories presented in the Fifth Assessment Report of the IPCC (IPCCAR5): 'capability', 'equality', 'responsibility-capability-need', 'equal cumulative per capita' and 'staged approaches'. Our results show that G7 members' Intended Nationally Determined Contribution (INDCs) mitigation targets are in line with a grandfathering approach but lack ambition to meet various visions of climate justice. The INDCs of China and Russia fall short of meeting the requirements of any allocation approach. Depending on how their INDCs are evaluated, the INDCs of India and Brazil can match some equity approaches evaluated in this study.