Search Results

Now showing 1 - 3 of 3
  • Item
    Improved Capacitive Deionization Performance of Mixed Hydrophobic / Hydrophilic Activated Carbon Electrodes
    (Bristol : IOP Publishing, 2016) Aslan, Mesut; Zeiger, Marco; Jäckel, Nicolas; Grobelsek, Ingrid; Weingarth, Daniel; Presser, Volker
    Capacitive deionization (CDI) is a promising salt removal technology with high energy efficiency when applied to low molar concentration aqueous electrolytes. As an interfacial process, ion electrosorption during CDI operation is sensitive to the pore structure and the total pore volume of carbon electrodes limit the maximum salt adsorption capacity (SAC). Thus, activation of carbons as a widely used method to enhance the porosity of a material should also be highly attractive for improving SAC values. In our study, we use easy-to-scale and facile-to-apply CO2 activation at temperatures between 950 °C and 1020 °C to increase the porosity of commercially available activated carbon. While the pore volume and surface area can be significantly increased up to 1.51 cm3/g and 2113 m2/g, this comes at the expense of making the carbon more hydrophobic. We present a novel strategy to still capitalize the improved pore structure by admixing as received (more hydrophilic) carbon with CO2 treated (more hydrophobic) carbon for CDI electrodes without using membranes. This translates in an enhanced charge storage ability in high and low molar concentrations (1 M and 5 mM NaCl) and significantly improved CDI performance (at 5 mM NaCl). In particular, we obtain stable CDI performance at 0.86 charge efficiency with 13.1 mg/g SAC for an optimized 2:1 mixture (by mass).
  • Item
    High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water
    (London : RSC Publishing, 2016) Srimuk, Pattarachai; Ries, Lucie; Zeiger, Marco; Fleischmann, Simon; Jäckel, Nicolas; Tolosa, Aura; Krüner, Benjamin; Aslan, Mesut; Presser, Volker
    Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol–gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.
  • Item
    Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater
    (London : Royal Society of Chemistry, 2019) Srimuk, P.; Husmann, S.; Presser, V.
    Technologies for the effective and energy efficient removal of salt from saline media for advanced water remediation are in high demand. Capacitive deionization using carbon electrodes is limited to highly diluted salt water. Our work demonstrates the high desalination performance of the silver/silver chloride conversion reaction by a chloride ion rocking-chair desalination mechanism. Silver nanoparticles are used as positive electrodes while their chlorination into AgCl particles produces the negative electrode in such a combination that enables a very low cell voltage of only Δ200 mV. We used a chloride-ion desalination cell with two flow channels separated by a polymeric cation exchange membrane. The optimized electrode paring between Ag and AgCl achieves a low energy consumption of 2.5 kT per ion when performing treatment with highly saline feed (600 mM NaCl). The cell affords a stable desalination capacity of 115 mg g-1 at a charge efficiency of 98%. This performance aligns with a charge capacity of 110 mA h g-1. © The Royal Society of Chemistry.