Search Results

Now showing 1 - 10 of 88
  • Item
    Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region - an overview of the airborne in situ and lidar measurements during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Weinzierl, Bernadett; Sauer, Daniel; Esselborn, Michael; Petzold, Andreas; Veira, Andreas; Rose, Maximilian; Mund, Susanne; Wirth, Martin; Ansmann, Albert; Tesche, Matthias; Gross, Silke; Freudenthaler, Volker
    In the framework of the Saharan Mineral Dust Experiment (SAMUM) airborne High Spectral Resolution Lidar and in situ measurements of the particle size, aerosol mixing state and absorption coefficient were conducted. Here, the properties of mineral dust and tropical biomass burning layers in the Cape Verde region in January/February 2008 are investigated and compared with the properties of fresh dust observed in May/June 2006 close the Sahara. In the Cape Verde area, we found a complex stratification with dust layers covering the altitude range below 2 km and biomass burning layers aloft. The aerosol type of the individual layers was classified based on depolarization and lidar ratios and, in addition, on in situ measured Ångström exponents of absorption åap. The dust layers had a depth of 1.3 ± 0.4 km and showed a median åap of 3.95. The median effective diameter Deff was 2.5 μm and the dust layers over Cape Verde yielded clear signals of aging: large particles were depleted due to gravitational settling and the accumulation mode diameter was shifted towards larger sizes as a result of coagulation. The tropical biomass layers had a depth of 2.0 ± 1.1 km and were characterized by a median åap of 1.34. They always contained a certain amount of large dust particles and showed a median Deff of 1.1 μm and a fine mode Deff,fine of 0.33. The dust and biomass burning layers had a median aerosol optical depth (AOD) of 0.23 and 0.09, respectively. The median contributions to the AOD of the total atmospheric column below 10 km were 75 and 37%, respectively.
  • Item
    Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Tesche, Matthias; Freudenthaler, Volker; Toledano, Carlos; Wiegner, Matthias; Ansmann, Albert; Althausen, Dietrich; Seefeldner, Meinhard
    The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.
  • Item
    Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Ansmann, Albert; MüLLER, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter
    Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.
  • Item
    Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Wiegner, Matthias; Geiß, Alexander; Schladitz, Alexander; Toledano, Carlos; Kandler, Konrad; Tesche, Matthias; Ansmann, Albert; Wiedensohler, Alfred
    Measurements with two Raman-depolarization lidars of the Meteorological Institute of the Ludwig-Maximilians- Universit¨at, M¨unchen, Germany, performed during SAMUM-2, were used to characterize the planetary boundary layer (PBL) over Praia, Cape Verde. A novel approach was used to determine the volume fraction of dust υd in the PBL. This approach primarily relies on accurate measurements of the linear depolarization ratio. Comparisons with independent in situ measurements showed the reliability of this approach. Based on our retrievals, two different phases could be distinguished within the measurement period of almost one month. The first (22–31 January 2008) was characterized by high aerosol optical depth (AOD) in the PBL and large υd > 95%. During the second phase, the AOD in the PBL was considerably lower and υd less than ∼40%. These findings were in very good agreement with ground based in situ measurements, when ambient volume fractions are considered that were calculated from the actual measurements of the dry volume fraction. Only in cases when dust was not the dominating aerosol component (second phase), effects due to hygroscopic growth became important.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  • Item
    Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate
    (Milton Park : Taylor & Francis, 2017) Heese, Birgit; Althausen, Dietrich; Dinter, Tilman; Esselborn, Michael; Müller, Thomas; Tesche, Matthias; Wiegner, Matthias
    Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.
  • Item
    Diurnal variation of the potassium layer in the upper atmosphere
    (Hoboken, NJ : Wiley, 2015) Feng W.; Höffner J.; Marsh D.R.; Chipperfield M.P.; Dawkins E.C.M.; Viehl T.P.; Plane J.M.C.
    Measurements of the diurnal cycle of potassium (K) atoms between 80 and 110 km have been made during October (for the years 2004–2011) using a Doppler lidar at Kühlungsborn, Germany (54.1°N, 11.7°E). A pronounced diurnal variation is observed in the K number density, which is explored by using a detailed description of the neutral and ionized chemistry of K in a three-dimensional chemistry climate model. The model captures both the amplitude and phase of the diurnal and semidiurnal variability of the layer, although the peak diurnal amplitude around 90 km is overestimated. The model shows that the total potassium density (≈ K + K+ + KHCO3) exhibits little diurnal variation at each altitude, and the diurnal variations are largely driven by photochemical conversion between these reservoir species. In contrast, tidally driven vertical transport has a small effect at this midlatitude location, and diurnal fluctuations in temperature are of little significance because they are small and the chemistry of K is relatively temperature independent.
  • Item
    EARLINET observations of the 14-22-May long-range dust transport event during SAMUM 2006: Validation of results from dust transport modelling
    (Milton Park : Taylor & Francis, 2017) Müller, D.; Heinold, B.; Tesche, M.; Tegen, I.; Althausen, D.; Alados Arboledas, L.; Amiridis, V.; Amodeo, A.; Ansmann, A.; Balis, D.; Comeron, A.; D’mico, G.; Gerasopoulos, E.; Guerrero-Rascado, J.L.; Freudenthaler, V.; Giannakaki, E.; Heese, B.; Iarlori, M.; Knippertz, P.; Mamouri, R.E.; Mona, L.; Papayannis, A.; Pappalardo, G.; Perrone, R-M.; Pisani, G.; Rizi, V.; Sicard, M.; Spinelli, N.; Tafuro, A.; Wiegner, M.
    We observed a long-range transport event of mineral dust from North Africa to South Europe during the Saharan Mineral Dust Experiment (SAMUM) 2006. Geometrical and optical properties of that dust plume were determined with Sun photometer of the Aerosol Robotic Network (AERONET) and Raman lidar near the North African source region, and with Sun photometers of AERONET and lidars of the European Aerosol Research Lidar Network (EARLINET) in the far field in Europe. Extinction-to-backscatter ratios of the dust plume over Morocco and Southern Europe do not differ. Ångstr¨om exponents increase with distance from Morocco. We simulated the transport, and geometrical and optical properties of the dust plume with a dust transport model. The model results and the experimental data show similar times regarding the appearance of the dust plume over each EARLINET site. Dust optical depth from the model agrees in most cases to particle optical depth measured with the Sun photometers. The vertical distribution of the mineral dust could be satisfactorily reproduced, if we use as benchmark the extinction profiles measured with lidar. In some cases we find differences. We assume that insufficient vertical resolution of the dust plume in the model calculations is one reason for these deviations.
  • Item
    Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Esselborn, Michael; Wirth, Martin; Fix, Andreas; Weinzierl, Bernadett; Rasp, Katharina; Tesche, Matthias; Petzold, Andreas
    Airborne measurements of pure Saharan dust extinction and backscatter coefficients, the corresponding lidar ratio and the aerosol optical thickness (AOT) have been performed during the Saharan Mineral Dust Experiment 2006, with a high spectral resolution lidar. Dust layers were found to range from ground up to 4–6 km above sea level (asl). Maximum AOT values at 532 nm, encountered within these layers during the DLR Falcon research flights were 0.50–0.55. A significant horizontal variability of the AOT south of the High Atlas mountain range was observed even in cases of a well-mixed dust layer. High vertical variations of the dust lidar ratio of 38–50 sr were observed in cases of stratified dust layers. The variability of the lidar ratio was attributed to dust advection from different source regions. The aerosol depolarization ratio was about 30% at 532 nm during all measurements and showed only marginal vertical variations.
  • Item
    Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming
    (Hoboken, NJ : Wiley, 2018-12-11) Triplett, Colin C.; Li, Jintai; Collins, Richard L.; Lehmacher, Gerald A.; Barjatya, Aroh; Fritts, David C.; Strelnikov, Boris; Lübken, Franz‐Josef; Thurairajah, Brentha; Harvey, V. Lynn; Hampton, Donald L.; Varney, Roger H.
    Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters.