Search Results

Now showing 1 - 10 of 21
  • Item
    A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions
    (Berlin ; Boston, Mass. : de Gruyter, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.
  • Item
    Optimal control of a cooling line for production of hot rolled dual phase steel
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Bleck, Wolfgang; Hömberg, Dietmar; Prahl, Ulrich; Suwanpinij, Piyada; Togobytska, Nataliya
    In this article, the optimal control of a cooling line for production of dual phase steel in a hot rolling process is discussed. In order to achieve a desired dual phase steel microstructure an optimal cooling strategy has to be found. The cooling strategy should be such that a desired final distribution of ferrite in the steel slab is reached most accurately. This problem has been solved by means of mathematical control theory. The results of the optimal control of the cooling line have been verified in hot rolling experiments at the pilot hot rolling mill at the Institute for Metal Forming (IMF), TU Bergakademie Freiberg.
  • Item
    A phase field approach for optimal boundary control of damage processes in two-dimensional viscoelastic media
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Farshbaf Shaker, Mohammad Hassan; Heinemann, Christian
    In this work we investigate a phase field model for damage processes in two-dimensional viscoelastic media with nonhomogeneous Neumann data describing external boundary forces. In the first part we establish global-in-time existence, uniqueness, a priori estimates and continuous dependence of strong solutions on the data. The main difficulty is caused by the irreversibility as well as boundedness of the phase field variable which results in a doubly constrained PDE system. In the last part we consider an optimal control problem where a cost functional penalizes maximal deviations from prescribed damage profiles. The goal is to minimize the cost functional with respect to exterior forces acting on the boundary which play the role of the control variable in the considered model . To this end, we prove existence of minimizers and study a family of "local'' approximations via adapted cost functionals.
  • Item
    Identification of the thermal growth characteristics of coagulated tumor tissue in laser-induced thermotherapy
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Hömberg, Dietmar; Liu, Jujun; Togobytska, Nataliya
    We consider an inverse problem arising in laser-induced thermotherapy, a minimally invasive method for cancer treatment, in which cancer tissues is destroyed by coagulation. For the dosage planning numerical simulation play an important role. To this end a crucial problem is to identify the thermal growth kinetics of the coagulated zone. Mathematically, this problem is a nonlinear and nonlocal parabolic heat source inverse problem. The solution to this inverse problem is defined as the minimizer of a nonconvex cost functional. The existence of the minimizer is proven. We derive the Gateaux derivative of the cost functional, which is based on the adjoint system, and use it for a numerical approximation of the optimal coefficient.
  • Item
    Simulation and control of a nonsmooth Cahn--Hilliard Navier--Stokes system with variable fluid densities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Gräßle, Carmen; Hintermüller, Michael; Hinze, Michael; Keil, Tobias
    We are concerned with the simulation and control of a two phase flow model governed by a coupled Cahn--Hilliard Navier--Stokes system involving a nonsmooth energy potential.We establish the existence of optimal solutions and present two distinct approaches to derive suitable stationarity conditions for the bilevel problem, namely C- and strong stationarity. Moreover, we demonstrate the numerical realization of these concepts at the hands of two adaptive solution algorithms relying on a specifically developed goal-oriented error estimator.In addition, we present a model order reduction approach using proper orthogonal decomposition (POD-MOR) in order to replace high-fidelity models by low order surrogates. In particular, we combine POD with space-adapted snapshots and address the challenges which are the consideration of snapshots with different spatial resolutions and the conservation of a solenoidal property.
  • Item
    Stability of the solution set of quasi-variational inequalities and optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements to the solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.
  • Item
    Optimal control of the sweeping process
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colombo, Giovanni; Henrion, René; Hoang, Nguyen D.; Mordukhovich, Borils S.
    We formulate and study an optimal control problem for the sweeping (Moreau) process, where control functions enter the moving sweeping set. To the best of our knowledge, this is the first study in the literature devoted to optimal control of the sweeping process. We first establish an existence theorem of optimal solutions and then derive necessary optimality conditions for this optimal control problem of a new type, where the dynamics is governed by discontinuous differential inclusions with variable right-hand sides. Our approach to necessary optimality conditions is based on the method of discrete approximations and advanced tools of variational analysis and generalized differentiation. The final results obtained are given in terms of the initial data of the controlled sweeping process and are illustrated by nontrivial examples.
  • Item
    Optimal control of geometric partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hintermüller, Michael; Keil, Tobias
    Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.
  • Item
    Second-order analysis of a boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary condition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Farshbaf Shaker, Mohammad Hassan; Gilardi, Gianni; Sprekels, Jürgen
    In this paper we establish second-order sufficient optimality conditions for a boundary control problem that has been introduced and studied by three of the authors in the preprint arXiv:1407.3916. This control problem regards the viscous Cahn-Hilliard equation with possibly singular potentials and dynamic boundary conditions.
  • Item
    Necessary conditions of first-order for an optimal boundary control problem for viscous damage processes in 2D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Farshbaf-Shaker, M. Hassan; Heinemann, Christian
    Controlling the growth of material damage is an important engineering task with plenty of real world applications. In this paper we approach this topic from the mathematical point of view by investigating an optimal boundary control problem for a damage phase-field model for viscoelastic media. We consider non-homogeneous Neumann data for the displacement field which describe external boundary forces and act as control variable. The underlying hyberbolic-parabolic PDE system for the state variables exhibit highly nonlinear terms which emerge in context with damage processes. The cost functional is of tracking type, and constraints for the control variable are prescribed. Based on recent results from [4], where global-in-time well-posedness of strong solutions to the lower level problem and existence of optimal controls of the upper level problem have been established, we show in this contribution differentiability of the control-to-state mapping, wellposedness of the linearization and existence of solutions of the adjoint state system. Due to the highly nonlinear nature of the state system which has by our knowledge not been considered for optimal control problems in the literature, we present a very weak formulation and estimation techniques of the associated adjoint system. For mathematical reasons the analysis is restricted here to the two-dimensional case. We conclude our results with first-order necessary optimality conditions in terms of a variational inequality together with PDEs for the state and adjoint state system.