Search Results

Now showing 1 - 10 of 23
  • Item
    Climate change impacts on hydrology and water resources
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Hattermann, F.F.; Huang, S.; Koch, H.
  • Item
    Regional projections of temperature and precipitation changes: Robustness and uncertainty aspects
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2017) Piniewski, M.; Mezghani, A.; Szczésniak, M.; Kundzewicz, Z.W.
    This study presents the analysis of bias-corrected projections of changes in temperature and precipitation in the Vistula and Odra basins, covering approximately 90% of the Polish territory and small parts of neighbouring countries in Central and Eastern Europe. The ensemble of climate projections consists of nine regional climate model simulations from the EURO-CORDEX ensemble for two future periods 2021-2050 and 2071-2100, assuming two representative concentration pathways (RCPs) 4.5 and 8.5. The robustness is measured by the ensemble models' agreement on significant changes.We found a robust increase in the annual mean of daily minimum and maximum temperature, by 1-1.4 °C in the near future and by 1.9-3.8 °C in the far future (areal-means of the ensemble mean values). Higher increases are consistently associated with minimum temperature and the gradient of change goes from SWto NE regions. Seasonal projections of both temperature variables reflect lower robustness and suggest a higher future increase in winter temperatures than in other seasons, notably in the far future under RCP 8.5 (by more than 1 °C). However, changes in annual means of precipitation are uncertain and not robust in any of the analysed cases, even though the climate models agree well on the increase. This increase is intensified with rising global temperatures and varies from 5.5% in the near future under RCP 4.5 to 15.2%in the far future under RCP 8.5. Spatial variability is substantial, although quite variable between individual climate model simulations. Although seasonal means of precipitation are projected to considerably increase in all four combinations of RCPs and projection horizons for winter and spring, the high model spread reduces considerably the robustness, especially for the far future. In contrast, the ensemble members agree well that overall, the summer and autumn (with exception of the far future under RCP 8.5) precipitation will not undergo statistically significant changes.
  • Item
    The PMIP4 contribution to CMIP6 - Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
    (Göttingen : Copernicus GmbH, 2017) Jungclaus, J.H.; Bard, E.; Baroni, M.; Braconnot, P.; Cao, J.; Chini, L.P.; Egorova, T.; Evans, M.; Fidel González-Rouco, J.; Goosse, H.; Hurtt, G.C.; Joos, F.; Kaplan, J.O.; Khodri, M.; Klein Goldewijk, K.; Krivova, N.; Legrande, A.N.; Lorenz, S.J.; Luterbacher, J.; Man, W.; Maycock, A.C.; Meinshausen, M.; Moberg, A.; Muscheler, R.; Nehrbass-Ahles, C.; Otto-Bliesner, B.I.; Phipps, S.J.; Pongratz, J.; Rozanov, E.; Schmidt, G.A.; Schmidt, H.; Schmutz, W.; Schurer, A.; Shapiro, A.I.; Sigl, M.; Smerdon, J.E.; Solanki, S.K.; Timmreck, C.; Toohey, M.; Usoskin, I.G.; Wagner, S.; Wu, C.-J.; Leng Yeo, K.; Zanchettin, D.; Zhang, Q.; Zorita, E.
    The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
  • Item
    Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison
    (München : European Geopyhsical Union, 2018) Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Martin Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.
    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.
  • Item
    Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Gutsch, M.; Lasch-Born, P.; Lüttger, A.B.; Suckow, F.; Murawski, A.; Pilz, T.
  • Item
    Complementing thermosteric sea level rise estimates
    (München : European Geopyhsical Union, 2015) Lorbacher, K.; Nauels, A.; Meinshausen, M.
    Thermal expansion of seawater has been one of the most important contributors to global sea level rise (SLR) over the past 100 years. Yet, observational estimates of this volumetric response of the world's oceans to temperature changes are sparse and mostly limited to the ocean's upper 700 m. Furthermore, only a part of the available climate model data is sufficiently diagnosed to complete our quantitative understanding of thermosteric SLR (thSLR). Here, we extend the available set of thSLR diagnostics from the Coupled Model Intercomparison Project Phase 5 (CMIP5), analyze those model results in order to complement upper-ocean observations and enable the development of surrogate techniques to project thSLR using vertical temperature profile and ocean heat uptake time series. Specifically, based on CMIP5 temperature and salinity data, we provide a compilation of thermal expansion time series that comprise 30 % more simulations than currently published within CMIP5. We find that 21st century thSLR estimates derived solely based on observational estimates from the upper 700 m (2000 m) would have to be multiplied by a factor of 1.39 (1.17) with 90 % uncertainty ranges of 1.24 to 1.58 (1.05 to 1.31) in order to account for thSLR contributions from deeper levels. Half (50 %) of the multi-model total expansion originates from depths below 490 ± 90 m, with the range indicating scenario-to-scenario variations. To support the development of surrogate methods to project thermal expansion, we calibrate two simplified parameterizations against CMIP5 estimates of thSLR: one parameterization is suitable for scenarios where hemispheric ocean temperature profiles are available, the other, where only the total ocean heat uptake is known (goodness of fit: ±5 and ±9 %, respectively).
  • Item
    Flood risk and climate change: global and regional perspectives
    (Milton Park : Taylor and Francis Ltd., 2014) Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; Muir-Wood, R.; Brakenridge, G.R.; Kron, W.; Benito, G.; Honda, Y.; Takahashi, K.; Sherstyukov, B.
    A holistic perspective on changing rainfall-driven flood risk is provided for the late 20th and early 21st centuries. Economic losses from floods have greatly increased, principally driven by the expanding exposure of assets at risk. It has not been possible to attribute rain-generated peak streamflow trends to anthropogenic climate change over the past several decades. Projected increases in the frequency and intensity of heavy rainfall, based on climate models, should contribute to increases in precipitation-generated local flooding (e.g. flash flooding and urban flooding). This article assesses the literature included in the IPCC SREX report and new literature published since, and includes an assessment of changes in flood risk in seven of the regions considered in the recent IPCC SREX report-Africa, Asia, Central and South America, Europe, North America, Oceania and Polar regions. Also considering newer publications, this article is consistent with the recent IPCC SREX assessment finding that the impacts of climate change on flood characteristics are highly sensitive to the detailed nature of those changes and that presently we have only low confidence1 in numerical projections of changes in flood magnitude or frequency resulting from climate change.
  • Item
    Understanding the origin of Paris Agreement emission uncertainties
    (London : Nature Publishing Group, 2017) Rogelj, J.; Fricko, O.; Meinshausen, M.; Krey, V.; Zilliacus, J.J.J.; Riahi, K.
    The UN Paris Agreement puts in place a legally binding mechanism to increase mitigation action over time. Countries put forward pledges called nationally determined contributions (NDC) whose impact is assessed in global stocktaking exercises. Subsequently, actions can then be strengthened in light of the Paris climate objective: Limiting global mean temperature increase to well below 2 °C and pursuing efforts to limit it further to 1.5 °C. However, pledged actions are currently described ambiguously and this complicates the global stocktaking exercise. Here, we systematically explore possible interpretations of NDC assumptions, and show that this results in estimated emissions for 2030 ranging from 47 to 63 GtCO2e yr-1. We show that this uncertainty has critical implications for the feasibility and cost to limit warming well below 2 °C and further to 1.5 °C. Countries are currently working towards clarifying the modalities of future NDCs. We identify salient avenues to reduce the overall uncertainty by about 10 percentage points through simple, technical clarifications regarding energy accounting rules. Remaining uncertainties depend to a large extent on politically valid choices about how NDCs are expressed, and therefore raise the importance of a thorough and robust process that keeps track of where emissions are heading over time.
  • Item
    The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
    (München : European Geopyhsical Union, 2016) O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.; Eyring, Veronika; Friedlingstein, Pierre; Hurtt, George; Knutti, Reto; Kriegler, Elmar; Lamarque, Jean-Francois; Lowe, Jason; Meehl, Gerald A.; Moss, Richard; Riahi, Keywan; Sanderson, Benjamin M.
    Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.
  • Item
    Estimation of sedimentary proxy records together with associated uncertainty
    (Göttingen : Copernicus GmbH, 2015) Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.