Search Results

Now showing 1 - 10 of 227
  • Item
    Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Knorr, Anne; Ludwig, Ralf
    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.
  • Item
    Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides
    (Amsterdam : Elsevier B.V., 2018) Peng, J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F.
    Chemistry; Catalysis; Organic Synthesis © 2018 The Author(s)Functionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO)6 as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis. Functionalized alkyl iodides were prepared in moderate to excellent yields with outstanding functional group tolerance. Besides the high value of the obtained products, all the atoms from the starting materials were incorporated in the final products and the reaction had high atom efficiency as well.
  • Item
    A meta-analysis of catalytic literature data reveals property-performance correlations for the OCM reaction
    ([London] : Nature Publishing Group UK, 2019) Schmack, Roman; Friedrich, Alexandra; Kondratenko, Evgenii V.; Polte, Jörg; Werwatz, Axel; Kraehnert, Ralph
    Decades of catalysis research have created vast amounts of experimental data. Within these data, new insights into property-performance correlations are hidden. However, the incomplete nature and undefined structure of the data has so far prevented comprehensive knowledge extraction. We propose a meta-analysis method that identifies correlations between a catalyst’s physico-chemical properties and its performance in a particular reaction. The method unites literature data with textbook knowledge and statistical tools. Starting from a researcher’s chemical intuition, a hypothesis is formulated and tested against the data for statistical significance. Iterative hypothesis refinement yields simple, robust and interpretable chemical models. The derived insights can guide new fundamental research and the discovery of improved catalysts. We demonstrate and validate the method for the oxidative coupling of methane (OCM). The final model indicates that only well-performing catalysts provide under reaction conditions two independent functionalities, i.e. a thermodynamically stable carbonate and a thermally stable oxide support.
  • Item
    Stability studies of ionic liquid [EMIm][NTf2] under short-term thermal exposure
    (London : RSC Publishing, 2016) Neise, Christin; Rautenberg, Christine; Bentrup, Ursula; Beck, Martin; Ahrenberg, Mathias; Schick, Christoph; Keßler, Olaf; Kragl, Udo
    Ionic liquids (ILs) as new media for synthesis and as functional fluids in technical applications are still of high interest. Cooling a steel component from an annealing temperature of nearly 850 °C down to room temperature in a liquid bath is a technically important process. The use of ionic liquids offers advantages avoiding film boiling of the quenching medium. However, such a high immersion temperature exceeds the thermal stability of the IL, for example such as [EMIm][NTf2]. To obtain information about formation of potential toxic decomposition products, potential fragments at varied states of decomposition of [EMIm][NTf2] were studied by various spectroscopic and gravimetric methods. For the first time it was possible to quantify fluorine-containing products via mass spectrometry coupled directly with thermogravimetric (TG) measurements. While chemical and spectroscopic analysis of thermally stressed ILs revealed no hints concerning changes of composition after quenching hot steel for several times, the mass-spectrometer (MS) coupled TG analysis gives information by comparing the decomposition behaviour of fresh and used ILs. A number of fragments were detected in low amounts confirming the proposed decomposition mechanism.
  • Item
    A chemometric study in the area of feasible solution of an acid-base titration of N-methyl-6-oxyquinolone
    (London : RSC Publishing, 2018) Sawall, Mathias; Schmode, Stella; Schröder, Henning; Ludwig, Ralf; Neymeyr, Klaus
    Multivariate curve resolution methods aim at recovering the underlying chemical components from spectroscopic data on chemical reaction systems. In most cases the spectra and concentration profiles of the pure components cannot be uniquely determined from the given spectral data. Instead continua of possible factors exist. This fact is known as rotational ambiguity. The sets of all possible pure component factors can be represented in the so-called area of feasible solutions (AFS). This paper presents an AFS study of the pure component reconstruction problem for a series of UV/Vis spectra taken from an acid-base titration of N-methyl-6-oxyquinolone. Additional information on the equilibrium concentration profiles for a varying acid concentration is taken from fluorescence measurements. On this basis chemometric duality arguments lead to the construction of a unique final solution.
  • Item
    Spectroscopic evidence of 'jumping and pecking' of cholinium and H-bond enhanced cation-cation interaction in ionic liquids
    (Cambridge : RSC Publ., 2015) Knorr, Anne; Fumino, Koichi; Bonsa, Anne-Marie; Ludwig, Ralf
    The subtle energy-balance between Coulomb-interaction, hydrogen bonding and dispersion forces governs the unique properties of ionic liquids. To measure weak interactions is still a challenge. This is in particular true in the condensed phase wherein a melange of different strong and directional types of interactions is present and cannot be detected separately. For the ionic liquids (2-hydroxyethyl)-trimethylammonium (cholinium) bis(trifluoro-methylsulfonyl)amide and N,N,N-trimethyl-N-propylammonium bis(trifluoromethylsulfonyl)amide which differ only in the 2-hydroxyethyl and the propyl groups of the cations, we could directly observe distinct vibrational signatures of hydrogen bonding between the cation and the anion indicated by ‘jumping and pecking’ motions of cholinium. The assignment could be confirmed by isotopic substitution H/D at the hydroxyl group of cholinium. For the first time we could also find direct spectroscopic evidence for H-bonding between like-charged ions. The repulsive Coulomb interaction between the cations is overcome by cooperative hydrogen bonding between the 2-hydroxyethyl functional groups of cholinium. This H-bond network is reflected in the properties of protic ionic liquids (PILs) such as viscosities and conductivities.
  • Item
    Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Gonçalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    1-Di­phenyl­phosphanyl-2-(di­phenyl­phosphor­yl)hydrazine
    (Chester : IUCr, 2018) Höhne, Martha; Aluri, Bhaskar; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2OP2, is an asymmetrically substituted hydrazine derivative bearing a phosphoryl and a phosphanyl substituent. The PNNP backbone has a torsion angle of −131.01 (8)°. In the crystal, mol­ecules form centrosymmetric dimers by inter­molecular N—H...O hydrogen bonds, which are further linked into a three-dimensional network by weak C—H...O and C—H...π inter­actions.
  • Item
    The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR
    (Cambridge : Royal Society of Chemistry, 2019) Fahami, A.R.; Günter, T.; Doronkin, D.E.; Casapu, M.; Zengel, D.; Vuong, T.H.; Simon, M.; Breher, F.; Kucherov, A.V.; Brückner, A.; Grunwaldt, J.-D.
    Cu-Zeolites with chabazite structure show a peculiar dual-maxima NO conversion profile, also known as a seagull profile, during the selective catalytic reduction by ammonia. In order to understand the origin of this behavior, systematic catalytic tests and operando spectroscopy were applied to derive structure–performance relationships for Cu-SSZ-13 catalysts with low and high Cu loading. Operando X-ray absorption, X-ray emission and in situ electron paramagnetic resonance spectroscopy measurements, including novel photon-in/photon-out techniques, demonstrated the interconversion of isolated Cu sites and dimeric bis(μ-oxo) Cu species, the former occurring via formation of ammonia Cu2+/Cu+ complexes and the latter in an oxidizing gas mixture. The formation of dimeric Cu+–O2–Cu+ species by involving Cu sites in close vicinity was linked to the high activity at low temperatures of the highly loaded Cu-SSZ-13 sample. In contrast, the isolated Cu sites present at very low Cu loadings are strongly poisoned by adsorbed NH3. The activity decrease around 350 °C that gives rise to the seagull shaped NO conversion profile could be attributed to a more localized structure of mono(μ-oxo)dicopper complexes. Above this temperature, which corresponds to partial NH3 desorption from Cu sites, the isolated Cu sites migrate to form additional dimeric entities thus recovering the SCR activity.
  • Item
    Theoretical mechanistic investigation of zinc(ii) catalyzed oxidation of alcohols to aldehydes and esters
    (London : RSC Publishing, 2016) Nisa, Riffat Un; Mahmood, Tariq; Ludwig, Ralf; Ayub, Khurshid
    The mechanism of the Zn(II) catalyzed oxidation of benzylic alcohol to benzaldehyde and ester by H2O2 oxidant was investigated through density functional theory methods and compared with the similar oxidation mechanisms of other late transition metals. Both inner sphere and intermediate sphere mechanisms have been analyzed in the presence and absence of pyridine-2-carboxylic acid (ligand). An intermediate sphere mechanism involving the transfer of hydrogen from alcohol to H2O2 was found to be preferred over the competitive inner sphere mechanism involving β-hydride elimination. Kinetic barriers associated with the intermediate sphere mechanism are consistent with the experimental observations, suggesting that the intermediate sphere mechanism is a plausible mechanism under these reaction conditions. The oxidation of alcohols to aldehydes (first step) is kinetically more demanding than the oxidation of hemiacetals to esters (second step). Changing the oxidant to tert-butyl hydrogen peroxide (TBHP) increases the activation barrier for the oxidation of alcohol to aldehyde by 0.4 kcal mol−1, but decreases the activation barrier by 3.24 kcal mol−1 for oxidation of hemiacetal to ester. Replacement of zinc bromide with zinc iodide causes the second step to be more demanding than the first step. Pyridine-2-carboxylic acid ligand remarkably decreases the activation barriers for the intermediate sphere pathway, whereas a less pronounced inverse effect is estimated for the inner sphere mechanism.