Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Benchmark of Simplified Time-Dependent Density Functional Theory for UV–Vis Spectral Properties of Porphyrinoids

2019, Batra, Kamal, Zahn, Stefan, Heine, Thomas

Time-dependent density functional theory is thoroughly benchmarked for the predictive calculation of UV–vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density functional theory, including the simplified Tamm–Dancoff approximation, are compared. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm–Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ≈0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ≈0.04 eV).

Loading...
Thumbnail Image
Item

Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth

2019, Hilmi, Isom, Lotnyk, Andriy, Gerlach, Jürgen W., Schumacher, Philipp, Rauschenbach, Bernd

The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).

Loading...
Thumbnail Image
Item

Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing

2017, Sajfutdinow, M., Uhlig, K., Prager, A., Schneider, C., Abel, B., Smith, D.M.

Defined arrangements of individual molecules are covalenty connected ("printed") onto SAM-functionalised gold substrates with nanometer resolution. Substrates were initially pre-functionlised by coating with 3,3′-dithiodipropionic acid (DTPA) to form a self-assembled monolayer (SAM), which was characterised by atomic force microscopy (AFM), contact angle goniometry, cyclic voltammetry and surface plasmon resonance (SPR) spectroscopy. Pre-defined "ink" patterns displayed on DNA origami-based single-use carriers ("stamp") were covalently conjugated to the SAM using 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC) and N-hydroxy-succinimide (NHS). These anchor points were used to create nanometer-precise single-molecule arrays, here with complementary DNA and streptavidin. Sequential steps of the printing process were evaluated by AFM and SPR spectroscopy. It was shown that 30% of the detected arrangements closely match the expected length distribution of designed patterns, whereas another 40% exhibit error within the range of only 1 streptavidin molecule. SPR results indicate that imposing a defined separation between molecular anchor points within the pattern through this printing process enhances the efficiency for association of specific binding partners for systems with high sterical hindrance. This study expands upon earlier findings where geometrical information was conserved by the application of DNA nanostructures, by establishing a generalisable strategy which is universally applicable to nearly any type of prefunctionalised substrate such as metals, plastics, silicates, ITO or 2D materials.

Loading...
Thumbnail Image
Item

Energetic electron assisted synthesis of highly tunable temperature-responsive collagen/elastin gels for cyclic actuation: macroscopic switching and molecular origins

2019, Wilharm, Nils, Fischer, Tony, Ott, Florian, Konieczny, Robert, Zink, Mareike, Beck-Sickinger, Annette G., Mayr, Stefan G.

Thermoresponsive bio-only gels that yield sufficiently large strokes reversibly and without large hysteresis at a well-defined temperature in the physiological range, promise to be of value in biomedical application. Within the present work we demonstrate that electron beam modification of a blend of natural collagen and elastin gels is a route to achieve this goal, viz. to synthesize a bioresorbable gel with largely reversible volume contractions as large as 90% upon traversing a transition temperature that can be preadjusted between 36 °C and 43 °C by the applied electron dose. Employing circular dichroism and temperature depending confocal laser scanning microscopy measurements, we furthermore unravel the mechanisms underlying this macroscopic behavior on a molecular and network level, respectively and suggest a stringent picture to account for the experimental observations. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures

2019, Wei, Ren, Breite, Daniel, Song, Chen, Gräsing, Daniel, Ploss, Tina, Hille, Patrick, Schwerdtfeger, Ruth, Matysik, Jörg, Schulze, Agnes, Zimmermann, Wolfgang

Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.

Loading...
Thumbnail Image
Item

Ion Beam Assisted Deposition of Thin Epitaxial GaN Films

2017-6-23, Rauschenbach, Bernd, Lotnyk, Andriy, Neumann, Lena, Poppitz, David, Gerlach, Jürgen W.

The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

Loading...
Thumbnail Image
Item

Research Update: Van-der-Waals epitaxy of layered chalcogenide Sb2Te3 thin films grown by pulsed laser deposition

2017, Hilmi, Isom, Lotnyk, Andriy, Gerlach, Jürgen W., Schumacher, Philipp, Rauschenbach, Bernd

An attempt to deposit a high quality epitaxial thin film of a two-dimensionally bonded (layered) chalcogenide material with van-der-Waals (vdW) epitaxy is of strong interest for non-volatile memory application. In this paper, the epitaxial growth of an exemplary layered chalcogenide material, i.e., stoichiometric Sb2Te3 thin films, is reported. The films were produced on unreconstructed highly lattice-mismatched Si(111) substrates by pulsed laser deposition (PLD). The films were grown by vdW epitaxy in a two-dimensional mode. X-ray diffraction measurements and transmission electron microscopy revealed that the films possess a trigonal Sb2Te3 structure. The single atomic Sb/Te termination layer on the Si surface was formed initializing the thin film growth. This work demonstrates a straightforward method to deposit vdW-epitaxial layered chalcogenides and, at the same time, opens up the feasibility to fabricate chalcogenide vdW heterostructures by PLD.

Loading...
Thumbnail Image
Item

Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response

2019, Riedel, Stefanie, Hietschold, Philine, Krömmelbein, Catharina, Kunschmann, Tom, Konieczny, Robert, Knolle, Wolfgang, Mierke, Claudia T., Zink, Mareike, Mayr, Stefan G.

Novel strategies to mimic mammalian extracellular matrix (ECM) in vitro are desirable to study cell behavior, diseases and new agents in drug delivery. Even though collagen represents the major constituent of mammalian ECM, artificial collagen hydrogels with characteristic tissue properties such as network size and stiffness are difficult to design without application of chemicals which might be even cytotoxic. In our study we investigate how high energy electron induced crosslinking can be utilized to precisely tune collagen properties for ECM model systems. Constituting a minimally invasive approach, collagen residues remain intact in the course of high energy electron treatment. Quantification of the 3D pore size of the collagen network as a function of irradiation dose shows an increase in density leading to decreased pore size. Rheological measurements indicate elevated storage and loss moduli correlating with an increase in crosslinking density. In addition, cell tests show well maintained viability of NIH 3T3 cells for irradiated collagen gels indicating excellent cellular acceptance. With this, our investigations demonstrate that electron beam crosslinked collagen matrices have a high potential as precisely tunable ECM-mimetic systems with excellent cytocompatibility.

Loading...
Thumbnail Image
Item

The Toxic Truth About Carbon Nanotubes in Water Purification: a Perspective View

2018-6-18, Das, Rasel, Leo, Bey Fen, Murphy, Finbarr

Without nanosafety guidelines, the long-term sustainability of carbon nanotubes (CNTs) for water purifications is questionable. Current risk measurements of CNTs are overshadowed by uncertainties. New risks associated with CNTs are evolving through different waste water purification routes, and there are knowledge gaps in the risk assessment of CNTs based on their physical properties. Although scientific efforts to design risk estimates are evolving, there remains a paucity of knowledge on the unknown health risks of CNTs. The absence of universal CNT safety guidelines is a specific hindrance. In this paper, we close these gaps and suggested several new risk analysis roots and framework extrapolations from CNT-based water purification technologies. We propose a CNT safety clock that will help assess risk appraisal and management. We suggest that this could form the basis of an acceptable CNT safety guideline. We pay particular emphasis on measuring risks based on CNT physico-chemical properties such as diameter, length, aspect ratio, type, charge, hydrophobicity, functionalities and so on which determine CNT behaviour in waste water treatment plants and subsequent release into the environment.

Loading...
Thumbnail Image
Item

Ion beam figuring machine for ultra-precision silicon spheres correction

2015, Arnold, Thomas, Pietag, Fred

In the framework of the Avogadro project, isotopically enriched 28Si spheres had been manufactured as artifacts for the assessment of various physical quantities including the sphere volume which finally leads to a very accurate determination of the Avogadro constant NA. The Avogadro constant is an important input datum for the redefinition of the unit of mass, the kilogram, on the basis of fundamental physical constants. During the recent measurement campaign, it has turned out that one of the main contributions to the overall uncertainty of NA is the sphericity error and consequently the interferometric volume measurement. Since chemical–mechanical polishing has reached its limits with respect to form accuracy due to the sensitivity of material removal rate to crystal orientation, it has been proposed to use ion beam figuring for further reduction of sphericity error from currently 50 nm PV to values <10 nm PV. In this paper, a new concept and realization of a multi-axis ion beam figuring machine dedicated for deterministic correction of silicon spheres is presented. Aspects of long term tool stability and alignment procedures in order to relate the ion beam footprint to the sphere surface are covered. Furthermore, a process dwell time calculation and tool path generation method dedicated for spheres manufacturing will be presented and discussed.