Search Results

Now showing 1 - 10 of 254
Loading...
Thumbnail Image
Item

Electrolytic Surface Treatment for Improved Adhesion between Carbon Fibre and Polycarbonate

2018, Kamps, Jan Henk, Henderson, Luke C., Scheffler, Christina, Van der Heijden, Ruud, Simon, Frank, Bonizzi, Teena, Verghese, Nikhil

To achieve good mechanical properties of carbon fibre-reinforced polycarbonate composites, the fibre-matrix adhesion must be dialled to an optimum level. The electrolytic surface treatment of carbon fibres during their production is one of the possible means of adapting the surface characteristics of the fibres. The production of a range of tailored fibres with varying surface treatments (adjusting the current, potential, and conductivity) was followed by contact angle, inverse gas chromatography and X-ray photoelectron spectroscopy measurements, which revealed a significant increase in polarity and hydroxyl, carboxyl, and nitrile groups on the fibre surface. Accordingly, an increase in the fibre-matrix interaction indicated by a higher interfacial shear strength was observed with the single fibre pull-out force-displacement curves. The statistical analysis identified the correlation between the process settings, fibre surface characteristics, and the performance of the fibres during single fibre pull-out testing.

Loading...
Thumbnail Image
Item

Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion

2015, Knorr, Anne, Ludwig, Ralf

Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.

Loading...
Thumbnail Image
Item

Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands

2016, Long, Hao, Fuchs, Markus, Yang, Linhai, Cheng, Hongyi

We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

Loading...
Thumbnail Image
Item

Feature Adaptive Sampling for Scanning Electron Microscopy

2016, Dahmen, Tim, Engstler, Michael, Pauly, Christoph, Trampert, Patrick, de Jonge, Niels, Mücklich, Frank, Slusallek, Philipp

A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning.

Loading...
Thumbnail Image
Item

Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage

2016, Rozenberg, Silvia, Saporiti, Fabiana, Lang, Julien, Audebert, Fernando, Botta, Pablo, Stoica, Mihai, Huot, Jacques, Eckert, Jürgen

In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.

Loading...
Thumbnail Image
Item

Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements

2019, Stiebing, Clara, Schie, Iwan W., Knorr, Florian, Schmitt, Michael, Keijzer, Nanda, Kleemann, Robert, Jahn, Izabella J., Jahn, Martin, Kiliaan, Amanda J., Ginner, Laurin, Lichtenegger, Antonia, Drexler, Wolfgang, Leitgeb, Rainer A., Popp, Jürgen

Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.

Loading...
Thumbnail Image
Item

Worldwide variations in artificial skyglow

2015, Kyba, Christopher C.M., Tong, Kai Pong, Bennie, Jonathan, Birriel, Ignacio, Birriel, Jennifer J., Cool, Andrew, Danielsen, Arne, Davies, Thomas W., den Outer, Peter N., Edwards, William, Ehlert, Rainer, Falchi, Fabio, Fischer, Jürgen, Giacomelli, Andrea, Giubbilini, Francesco, Haaima, Marty, Hesse, Claudia, Heygster, Georg, Hölker, Franz, Inger, Richard, Jensen, Linsey J., Kuechly, Helga U., Kuehn, John, Langill, Phil, Lolkema, Dorien E., Nagy, Matthew, Nievas, Miguel, Ochi, Nobuaki, Popow, Emil, Posch, Thomas, Puschnig, Johannes, Ruhtz, Thomas, Schmidt, Wim, Schwarz, Robert, Schwope, Axel, Spoelstra, Henk, Tekatch, Anthony, Trueblood, Mark, Walker, Constance E., Weber, Michael, Welch, Douglas L., Zamorano, Jaime, Gaston, Kevin J.

Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.

Loading...
Thumbnail Image
Item

Ultrasmall SnO₂ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage

2014, Ding, Liping, He, Shulian, Miao, Shiding, Jorgensen, Matthew R., Leubner, Susanne, Yan, Chenglin, Hickey, Stephen G., Eychmüller, Alexander, Xu, Jinzhang, Schmidt, Oliver G.

Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

Loading...
Thumbnail Image
Item

Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization

2016, Trützschler, Julia, Sentosun, Kadir, Mozooni, Babak, Mattheis, Roland, McCord, Jeffrey

High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.

Loading...
Thumbnail Image
Item

Spatial resolution of tip-enhanced Raman spectroscopy – DFT assessment of the chemical effect

2016, Latorre, Federico, Kupfer, Stephan, Bocklitz, Thomas, Kinzel, Daniel, Trautmann, Steffen, Gräfe, Stefanie, Deckert, Volker

Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle–substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.