Search Results

Now showing 1 - 4 of 4
  • Item
    The equivalent circuit approach for the electrical diagnostics of dielectric barrier discharges: The classical theory and recent developments
    (Basel : MDPI AG, 2019) Pipa, Andrei V.; Brandenburg, Ronny
    Measurements of current and voltage are the basic diagnostics for electrical discharges. However, in the case of dielectric barrier discharges (DBDs), the measured current and voltage waveforms are influenced by the discharge reactor geometry, and thus, interpretation of measured quantities is required to determine the discharge properties. This contribution presents the main stages of the development of electrical diagnostics of DBDs, which are based on lumped electrical elements. The compilation and revision of the contributions to the equivalent circuit approach are targeted to indicate: (1) the interconnection between the stage of development, (2) its applicability, and (3) the current state-of-the-art of this approach. © 2019 by the authors.
  • Item
    Risk assessment of kINPen plasma treatment of four human pancreatic cancer cell lines with respect to metastasis
    (Basel : MDPI AG, 2019) Bekeschus, Sander; Freund, Eric; Spadola, Chiara; Privat-Maldonado, Angela; Hackbarth, Christine; Bogaerts, Annemie; Schmidt, Anke; Wende, Kristian; Weltmann, Klaus-Dieter; Woedtke, Thomas von; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Käding, André
    Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo. © 2019 by the authors.
  • Item
    Out of the lab and into the bathroom: Evening short-term exposure to conventional light suppresses melatonin and increases alertness perception
    (Basel : MDPI AG, 2013) Wahnschaffe, A.; Haedel, S.; Rodenbeck, A.; Stoll, C.; Rudolph, H.; Kozakov, R.; Schoepp, H.; Kunz, D.
    Life in 24-h society relies on the use of artificial light at night that might disrupt synchronization of the endogenous circadian timing system to the solar day. This could have a negative impact on sleep-wake patterns and psychiatric symptoms. The aim of the study was to investigate the influence of evening light emitted by domestic and work place lamps in a naturalistic setting on melatonin levels and alertness in humans. Healthy subjects (6 male, 3 female, 22-33 years) were exposed to constant dim light (<10 lx) for six evenings from 7:00 p.m. to midnight. On evenings 2 through 6, 1 h before habitual bedtime, they were also exposed to light emitted by 5 different conventional lamps for 30 min. Exposure to yellow light did not alter the increase of melatonin in saliva compared to dim light baseline during (38 ± 27 pg/mL vs. 39 ± 23 pg/mL) and after light exposure (39 ± 22 pg/mL vs. 44 ± 26 pg/mL). In contrast, lighting conditions including blue components reduced melatonin increase significantly both during (office daylight white: 25 ± 16 pg/mL, bathroom daylight white: 24 ± 10 pg/mL, Planon warm white: 26 ± 14 pg/mL, hall daylight white: 22 ± 14 pg/mL) and after light exposure (office daylight white: 25 ± 15 pg/mL, bathroom daylight white: 23 ± 9 pg/mL, Planon warm white: 24 ± 13 pg/mL, hall daylight white: 22 ± 26 pg/mL). Subjective alertness was significantly increased after exposure to three of the lighting conditions which included blue spectral components in their spectra. Evening exposure to conventional lamps in an everyday setting influences melatonin excretion and alertness perception within 30 min.
  • Item
    Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization
    (Basel : MDPI AG, 2014) Gabler, C.; Zietz, C.; Göhler, R.; Fritsche, A.; Lindner, T.; Haenle, M.; Finke, B.; Meichsner, J.; Lenz, S.; Frerich, B.; Lüthen, F.; Nebe, J.B.; Bader, R.
    By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V) coated with plasma-polymerized allylamine (PPAAm) and plasma-polymerized ethylenediamine (PPEDA) versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC) was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%). Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5%) and implants with PPEDA a significantly increased BIC (63.7%). In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.