Search Results

Now showing 1 - 5 of 5
  • Item
    Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol
    (Oxford : Elsevier Science, 2017) Luo, Jinji; Cerretti, Giacomo; Krause, Beate; Zhang, Long; Otto, Thomas; Jenschke, Wolfgang; Ullrich, Mathias; Tremel, Wolfgang; Voit, Brigitte; Pötschke, Petra
    The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.
  • Item
    Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions
    (Oxford : Elsevier Science, 2014) Staudinger, Ulrike; Krause, Beate; Steinbach, Christine; Pötschke, Petra; Voit, Brigitte
    The dispersion of commercial multiwalled carbon nanotubes (MWCNTs, Nanocyl™ NC7000) in chloroform and in polycarbonate (PC)-chloroform solutions was investigated by variation of the polymer concentration, MWCNT amount and sonication time and compared with PC/MWCNT composites, which were processed by melt mixing, subsequently dissolved in chloroform and dispersed via sonication under the same conditions. The sedimentation behaviour was characterised under centrifugal forces using a LUMiSizer® separation analyser. The space and time resolved extinction profiles as a measure of the stability of the dispersion and the particle size distribution were evaluated. Sonication up to 5 min gradually increases the amount of dispersed particles in the solutions. A significant improvement of the MWCNT dispersion in chloroform was achieved by the addition of PC indicating the mechanism of polymer chain wrapping around the MWCNTs. In dispersions of melt mixed PC/MWCNT composites the dispersion of MWCNTs is significantly enhanced already at a low sonication time of only 0.5 min due to very efficient polymer wrapping during the melt mixing process. However, the best dispersion quality does not lead to the highest electrical conductivity of thin composite films made of these PC/MWCNT dispersions.
  • Item
    Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices
    (Oxford : Elsevier Science, 2018) Krause, Beate; Barbier, Carine; Kunz, Karina; Pötschke, Petra
    In this contribution, three different types of CNTs, namely single-walled (SWCNT), multi-walled (MWCNT) and branched MWCNTs were melt mixed in amounts of 0.1–10 wt.-% in polypropylene (PP), polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) using a small-scale microcompounder. The filler dispersion of compression-moulded samples was characterized using light and electron microscopy, and the electrical and thermal properties were measured. The lowest electrical percolation thresholds were found for composites of PP/SWCNT, PP/branched MWCNT and PC/branched MWCNT, which percolated already at <0.1 wt.-% CNT loading. Low values of electrical volume resistivity of about 3 Ohm·cm (PVDF), 7 Ohm·cm (PP) and 2 Ohm·cm (PC) could be reached when loading with 2 wt.-% branched MWCNT. A homogeneous dispersion in the macro- and microlevel was observed especially for composites containing branched MWCNTs. For all CNT types, a matrix nucleation effect was found in PP and PVDF using differential scanning calorimetry.
  • Item
    Melt mixed SWCNT-polypropylene composites with very low electrical percolation
    (Oxford : Elsevier Science, 2016) Krause, Beate; Pötschke, Petra; Ilin, Evgeniy; Predtechenskiy, Mikhail
    Singlewalled carbon nanotube material of the type TUBALL™ (OCSiAl) was used to prepare composites with polypropylene by melt mixing using a conical twin screw micro-compounder. The compression moulded composites showed electrical percolation between 0.075 and 0.1 wt % and achieved volume resistivity values lower than 1 kOhm-cm already at 0.8 wt % loading. Light microscopy and scanning electron microscopy revealed good distribution and dispersion into small diameter bundles as well as retained high nanotube length. In connection with the very low percolation threshold this indicates that the SWCNT material shows an exceptionally good dispersibility which may be due to relatively high nanotube diameters with a mean value of 1.6 nm. In tensile tests already 0.1 wt % nanotube additions resulted in slight increase in Young's modulus and maximum stress. Tuball™ SWCNT material seems to be very promising for conductivity enhancement.
  • Item
    Localization of carbon nanotubes in polyamide 6 blends with non-reactive and reactive rubber
    (Oxford : Elsevier Science, 2014) Krause, Beate; Schneider, Cecile; Boldt, Regine; Weber, Martin; Park, Hye Jin; Pötschke, Petra
    Blending of two immiscible polymer matrices can be an effective way to combine favourable properties of both blend partners. The additional incorporation of multiwalled carbon nanotubes (MWCNTs) in such thermoplastic blends may further enhance the blend properties and especially generate electrical conductivity. In the present study, 20 wt.% of non-reactive rubber and maleic anhydride functionalized rubber were melt blended with polyamide 6 and 3 wt.% MWCNTs by using different incorporation strategies. For the blends containing non-reactive rubber, the MWCNTs were always localized selectively in the thermodynamically preferred polyamide phase as shown by TEM images and electrical measurements. Interestingly, the different strategies resulted in different localization behaviours of the MWCNTs in case of the reactive rubber. These findings demonstrate the significant influence of maleic anhydride groups of the rubber component on localization of MWCNTs in the different blend phases which results in different values of electrical volume resistivity of the blends. © 2014 The Authors. Published by Elsevier Ltd.