Search Results

Now showing 1 - 10 of 22
  • Item
    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts
    (Orchard Park : Impact Journals, 2014) Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian; Reifenberger, Guido; Stühle, Kai
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
  • Item
    Projections of temperature-related excess mortality under climate change scenarios
    (Amsterdam : Elsevier B.V., 2017) Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; Valdes Ortega, N.; Kan, H.; Osorio, S.; Kyselý, J.; Urban, A.; Jaakkola, J.J.K.; Ryti, N.R.I.; Pascal, M.; Goodman, P.G.; Zeka, A.; Michelozzi, P.; Scortichini, M.; Hashizume, M.; Honda, Y.; Hurtado-Diaz, M.; Cesar Cruz, J.; Seposo, X.; Kim, H.; Tobias, A.; Iñiguez, C.; Forsberg, B.; Åström, D.O.; Ragettli, M.S.; Guo, Y.L.; Wu, C.-F.; Zanobetti, A.; Schwartz, J.; Bell, M.L.; Dang, T.N.; Van, D.D.; Heaviside, C.; Vardoulakis, S.; Hajat, S.; Haines, A.; Armstrong, B.
    Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding: UK Medical Research Council.
  • Item
    Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models
    (London : Nature Publishing Group, 2014) Chwalek, K.; Tsurkan, M.V.; Freudenberg, U.; Werner, C.
    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.
  • Item
    Medical ethics in the Anthropocene: how are €100 billion of German physicians' pension funds invested?
    (Amsterdam : Elsevier, 2019) Schulz, Christian M.; Ahrend, Klaus-Michael; Schneider, Gerhard; Hohendorf, Gerrit; Schellnhuber, Hans Joachim; Busse, Reinhard
    [No abstract available]
  • Item
    Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Gonçalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Comments on the authors’ reply to the critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Goncalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis
    (San Francisco, California, US : PLOS, 2016) Deliano, Matthias; Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Effect on healthcare utilization and costs of spinal manual therapy for acute low back pain in routine care: A propensity score matched cohort study
    (San Francisco, California, US : PLOS, 2017) Walker, Jochen; Mertens, Ulf Kai; Schmidt, Carsten Oliver; Chenot, Jean-François
    Spinal manual therapy (SMT) is a popular treatment option for low back pain (LBP). The aim of our analysis was to evaluate the effects of manual therapy delivered by general practitioners and ambulatory orthopedic surgeons in routine care on follow up consultations, sick leave, health service utilization and costs for acute LBP compared to matched patients not receiving manual therapy. This is a propensity score matched cohort study based on health claims data. We identified a total of 113.652 adult patients with acute LBP and no coded red flags of whom 21.021 (18%) received SMT by physicians. In the final analysis 17.965 patients in each group could be matched. Balance on patients' coded characteristics, comorbidity and prior health service utilization was achieved. The provision of SMT for acute LBP had no relevant impact on follow up visits and days of sick leave for LBP in the index billing period and the following year. SMT was associated with a higher proportion of imaging studies for LBP (30.6% vs. 23%, SMD: 0.164 [95% CI 0.143-0.185]). SMT did not lead to meaningful savings by replacing other health services for LBP. SMT for acute non-specific LBP in routine care was not clinically meaningful effective to reduce sick leave and reconsultation rates compared to no SMT and did not lead to meaningful savings by replacing other health services from the perspective of health insurance. This does not imply that SMT is ineffective but might reflect a problem with selection of suitable patients and the quality and quantity of SMT in routine care. National Manual Medicine societies should state clearly that imaging is not routinely needed prior to SMT in patients with low suspicion of presence of red flags and monitor the quality of provided services.
  • Item
    Graphene oxide functional nanohybrids with magnetic nanoparticles for improved vectorization of doxorubicin to neuroblastoma cells
    (Basel : MDPI AG, 2019) Lerra, L.; Farfalla, A.; Sanz, B.; Cirillo, G.; Vittorio, O.; Voli, F.; Grand, M.L.; Curcio, M.; Nicoletta, F.P.; Dubrovska, A.; Hampel, S.; Iemma, F.; Goya, G.F.
    With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin–human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44–0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.