Search Results

Now showing 1 - 2 of 2
  • Item
    Adaptive micro axicons for laser applications
    (Les Ulis : EDP Sciences, 2015) Wallrabe, Ulrike; Brunne, Jens; Treffer, Alexander; Grunwald, Ruediger; Bellouard, Yves
    We report on the design, fabrication and testing of novel types of low-dispersion axicons for the adaptive shaping of ultrashort laser pulses. An overview is given on the basic geometries and operating principles of our purely reflective adaptive MEMS-type devices based on thermal or piezoelectric actuation. The flexible formation of nondiffracting beams at pulse durations down to a few oscillations of the optical field enables new applications in optical communication, pulse diagnostics, laser-matter interaction and particle manipulation. As an example, we show first promising results of adaptive autocorrelation. The combination of excellent pulse transfer, self-reconstruction properties and propagation invariance of nondiffracting beams with an adaptive approach promises to extend the field of practical applications significantly.
  • Item
    Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018-10-23) Loiko, Pavel; Bora, Tanujjal; Serres, Josep Maria; Yu, Haohai; Aguiló, Magdalena; Díaz, Francesc; Griebner, Uwe; Petrov, Valentin; Mateos, Xavier; Dutta, Joydeep
    Zinc oxide (ZnO) nanorods (NRs) oriented along the crystallographic [001] axis are grown by the hydrothermal method on glass substrates. The ZnO NRs exhibit a broadband (1–2 µm) near-IR absorption ascribed to the singly charged zinc vacancy VZn−1. The saturable absorption of the ZnO NRs is studied at ≈1 µm under picosecond excitation, revealing a low saturation intensity, ≈10 kW/cm2, and high fraction of the saturable losses. The ZnO NRs are applied as saturable absorbers in diode-pumped Yb (≈1.03 µm) and Tm (≈1.94 µm) lasers generating nanosecond pulses. The ZnO NRs grown on various optical surfaces are promising broadband saturable absorbers for nanosecond near-IR lasers in bulk and waveguide geometries.