Search Results

Now showing 1 - 7 of 7
  • Item
    Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy
    (London [u.a.] : Taylor & Francis, 2019) Niu, Gang; Calka, Pauline; Huang, Peng; Sharath, Sankaramangalam Ulhas; Petzold, Stefan; Gloskovskii, Andrei; Fröhlich, Karol; Zhao, Yudi; Kan, Jinfeng; Schubert, Markus Andreas; Bärwolf, Florian; Ren, Wei; Ye, Zuo-Guang; Perez, Eduardo; Wenger, Christian; Alff, Lambert; Schroeder, Thomas
    The HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Cryogenic-temperature-induced structural transformation of a metallic glass
    (London [u.a.] : Taylor & Francis, 2016-11-30) Bian, Xilei; Wang, Gang; Wang, Qing; Sun, Baoan; Hussain, Ishtiaq; Zhai, Qijie; Mattern, Norbert; Bednarčík, Jozef; Eckert, Jürgen
    The plasticity of metallic glasses depends largely on the atomic-scale structure. However, the details of the atomic-scale structure, which are responsible for their properties, remain to be clarified. In this study, in-situ high-energy synchrotron X-ray diffraction and strain-rate jump compression tests at different cryogenic temperatures were carried out. We show that the activation volume of flow units linearly depends on temperature in the non-serrated flow regime. A plausible atomic deformation mechanism is proposed, considering that the activated flow units mediating the plastic flow originate from the medium-range order and transit to the short-range order with decreasing temperature.
  • Item
    Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell
    (Amsterdam [u.a.] : Elsevier, 2015) Thiele, Matthias; Götz, Isabell; Trautmann, Steffen; Müller, Robert; Csáki, Andrea; Henkel, Thomas; Fritzsche, Wolfgang
    Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.
  • Item
    Synthesis of surfactant-free Cu–Pt dendritic heterostructures with highly electrocatalytic performance for methanol oxidation reaction
    (London [u.a.] : Taylor & Francis, 2016) Kang, Shendong; Gao, Guanhui; Xie, Xiaobin; Shibayama, Tamaki; Lei, Yanhua; Wang, Yan; Cai, Lintao
    A facile and free surfactant strategy is explored to synthesize Cu–Pt bimetallic nano-heterostructures with dendritic exterior. For comparison, the Cu–Pt coral-like nanoparticles are fabricated by using CTAC as a surfactant. The well-designed Cu–Pt dendritic spherical heterostructures exhibit superior enhanced electrocatalytic activity and stability toward methanol oxidation reaction in alkaline media, compared to the Cu–Pt coral-like nanoparticles and the commercial Pt/C, respectively. The advanced technique for fabricating Cu–Pt dendritic spherical heterostructures could pave a way to pursue low-cost Pt-based catalysts, maintaining highly promoted electrocatalytic performance and durability.
  • Item
    Is the energy density a reliable parameter for materials synthesis by selective laser melting?
    (London [u.a.] : Taylor & Francis, 2017-3-9) Prashanth, K.G.; Scudino, S.; Maity, T.; Das, J.; Eckert, J.
    The effective fabrication of materials using selective laser melting depends on the process parameters. Here, we analyse the suitability of the energy density to represent the energy transferred to the powder bed, which is effectively used to melt the particles and to produce the bulk specimens. By properly varying laser power and speed in order to process the powder at constant energy density, we show that the equation currently used to calculate the energy density gives only an approximate estimation and that hatch parameters and material properties should be considered to correctly evaluate the energy density.
  • Item
    Grain boundary assisted photocurrent collection in thin film solar cells
    (Les Ulis : EDP Sciences, 2015) Harndt, Susanna; Kaufmann, Christian A.; Lux-Steiner, Martha C.; Klenk, Reiner; Nürnberg, Reiner
    The influence of absorber grain boundaries on the photocurrent transport in chalcopyrite based thin film solar cells has been calculated using a two dimensional numerical model. Considering extreme cases, the variation in red response is more expressed than in one dimensional models. These findings may offer an explanation for the strong influence of buffer layer preparation on the spectral response of cells with small grained absorbers.
  • Item
    From statistic to deterministic nanostructures in fused silica induced by nanosecond laser radiation
    (Amsterdam [u.a.] : Elsevier, 2018) Lorenz, Pierre; Klöppel, Michael; Zagoranskiy, Igor; Zimmer, Klaus
    The production of structures by laser machining below the diffraction limit is still a challenge. However, self-organization processes can be useful. The laser-induced self-organized modification of the shape of photolithographic produced chromium structures on fused silica as well as the structuring of the fused silica surface by nanosecond UV laser radiation was studied, respectively. Low fluence single pulse laser irradiation (□ > 300 mJ/cm2) cause the formation from chromium squares to droplets due to the mass transport in the molten chromium film. This process is governed by the instability of the molten metal due to the surface tension driven liquid phase mass transport. For a chromium pattern size similar to the instability length two specific droplet distributions were found which are single droplets with a determined position near the centre of the original pattern or random distributed smaller droplets arranged circularly. Each of the metal patterns can be transferred into the fused silica by a multi-pulse irradiation. The experimental results can be simulated well for low fluences by sequential solving the heat and Navier-Stokes equation.