Search Results

Now showing 1 - 4 of 4
  • Item
    Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge
    (Melville, NY : AIP Publishing, 2015) Beer, Meike V.; Hahn, Kathrin; Diederichs, Sylvia; Fabry, Marlies; Singh, Smriti; Spencer, Steve J.; Salber, Jochen; Möller, Martin; Shard, Alexander G.; Groll, Jürgen
    Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.
  • Item
    Probing carbonyl-water hydrogen-bond interactions in thin polyoxazoline brushes
    (Melville, NY : AIP Publishing, 2016) Kroning, Annika; Furchner, Andreas; Adam, Stefan; Uhlmann, Petra; Hinrichs, Karsten
    Temperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule–solvent interactions and results in a switching of the brushes between swollen and collapsed states. This work studies the temperature-dependent interactions between poly(2-oxazoline) brushes and water. In detail, thermoresponsive poly(2-cyclopropyl-2-oxazoline), nonresponsive hydrophilic poly(2-methyl-2-oxazoline), as well as a copolymer of the two were investigated with in situ infrared ellipsometry. Focus was put on interactions of the brushes' carbonyl groups with water molecules. Different polymer–water interactions could be observed and assigned to hydrogen bonding between C=O groups and water molecules. The switching behavior of the brushes in the range of 20–45 °C was identified by frequency shifts and intensity changes of the amide I band.
  • Item
    Compact, high-repetition-rate source for broadband sum-frequency generation spectroscopy
    (Melville, NY : AIP Publishing, 2017) Heiner, Zsuzsanna; Petrov, Valentin; Mero, Mark
    We present a high-efficiency optical parametric source for broadband vibrational sum-frequency generation (BB-VSFG) for the chemically important mid-infrared spectral range at 2800-3600 cm-1 to study hydrogen bonding interactions affecting the structural organization of biomolecules at water interfaces. The source consists of a supercontinuum-seeded, dual-beam optical parametric amplifier with two broadband infrared output beams and a chirped sum-frequency mixing stage providing narrowband visible pulses with adjustable bandwidth. Utilizing a pulse energy of only 60 μJ from a turn-key, 1.03-μm pump laser operating at a repetition rate of 100 kHz, the source delivers 6-cycle infrared pulses at 1.5 and 3.2 μm with pulse energies of 4.6 and 1.8 μJ, respectively, and narrowband pulses at 0.515 μm with a pulse energy of 5.0 μJ. The 3.2-μm pulses are passively carrier envelope phase stabilized with fluctuations at the 180-mrad level over a 10-s time period. The 1.5-μm beamline can be exploited to deliver pump pulses for time-resolved studies after suitable frequency up-conversion. The high efficiency, stability, and two orders of magnitude higher repetition rate of the source compared to typically employed systems offer great potential for providing a boost in sensitivity in BB-VSFG experiments at a reduced cost.
  • Item
    Low-loss fiber-to-chip couplers with ultrawide optical bandwidth
    (Melville, NY : AIP Publishing, 2019) Gehring, H.; Blaicher, M.; Hartmann, W.; Varytis, P.; Busch, K.; Wegener, M.; Pernice, W.H.P.
    Providing efficient access from optical fibers to on-chip photonic systems is a key challenge for integrated optics. In general, current solutions allow either narrowband out-of-plane-coupling to a large number of devices or broadband edge-coupling to a limited number of devices. Here we present a hybrid approach using 3D direct laser writing, merging the advantages of both concepts and enabling broadband and low-loss coupling to waveguide devices from the top. In the telecom wavelength regime, we demonstrate a coupling loss of less than -1.8 dB between 1480 nm and 1620 nm. In the wavelength range between 730 nm and 1700 nm, we achieve coupling efficiency well above -8 dB which is sufficient for a range of broadband applications spanning more than an octave. The 3D couplers allow relaxed mechanical alignment with respect to optical fibers, with -1 dB alignment tolerance of about 5 μm in x- and y-directions and -1 dB alignment tolerance in the z-direction of 34 μm. Using automatized alignment, many such couplers can be connected to integrated photonic circuits for rapid prototyping and hybrid integration. © 2019 Author(s).