Search Results

Now showing 1 - 10 of 11
Loading...
Thumbnail Image
Item

Cytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network

2019, Xu, Yong, Patsis, Panagiotis A., Hauser, Sandra, Voigt, Dagmar, Rothe, Rebecca, Günther, Markus, Cui, Meiying, Yang, Xuegeng, Wieduwild, Robert, Eckert, Kerstin, Neinhuis, Christoph, Akbar, Teuku Fawzul, Minev, Ivan R., Pietzsch, Jens, Zhang, Yixin

Synthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.

Loading...
Thumbnail Image
Item

DNA Nanotechnology Enters Cell Membranes

2019, Huo, Shuaidong, Li, Hongyan, Boersma, Arnold J., Herrmann, Andreas

DNA is more than a carrier of genetic information: It is a highly versatile structural motif for the assembly of nanostructures, giving rise to a wide range of functionalities. In this regard, the structure programmability is the main advantage of DNA over peptides, proteins, and small molecules. DNA amphiphiles, in which DNA is covalently bound to synthetic hydrophobic moieties, allow interactions of DNA nanostructures with artificial lipid bilayers and cell membranes. These structures have seen rapid growth with great potential for medical applications. In this Review, the current state of the art of the synthesis of DNA amphiphiles and their assembly into nanostructures are first summarized. Next, an overview on the interaction of these DNA amphiphiles with membranes is provided, detailing on the driving forces and the stability of the interaction. Moreover, the interaction with cell surfaces in respect to therapeutics, biological sensing, and cell membrane engineering is highlighted. Finally, the challenges and an outlook on this promising class of DNA hybrid materials are discussed.

Loading...
Thumbnail Image
Item

Making Sense of Complex Carbon and Metal/Carbon Systems by Secondary Electron Hyperspectral Imaging

2019, Abrams, Kerry J., Dapor, Maurizio, Stehling, Nicola, Azzolini, Martina, Kyle, Stephan J., Schäfer, Jan, Quade, Antje, Mika, Filip, Kratky, Stanislav, Pokorna, Zuzana, Konvalina, Ivo, Mehta, Danielle, Black, Kate, Rodenburg, Cornelia

Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.

Loading...
Thumbnail Image
Item

Strategies for Analyzing Noncommon-Atom Heterovalent Interfaces: The Case of CdTe-on-InSb

2019, Luna, Esperanza, Trampert, Achim, Lu, Jing, Aoki, Toshihiro, Zhang, Yong-Hang, McCartney, Martha R., Smith, David J.

Semiconductor heterostructures are intrinsic to a wide range of modern-day electronic devices, such as computers, light-emitting devices, and photodetectors. Knowledge of chemical interfacial profiles in these structures is critical to the task of optimizing the device performance. This work presents an analysis of the composition profile and strain across the noncommon-atom heterovalent CdTe/InSb interface, carried out using a combination of electron microscopy imaging techniques. Because of the close atomic numbers of the constituent elements, techniques such as high-angle annular-dark-field and large-angle bright-field scanning transmission electron microscopy, as well as electron energy-loss spectroscopy, give results from the interface region that are inherently difficult to interpret. By contrast, use of the 002 dark-field imaging technique emphasizes the interface location by comparing differences in structure factors between the two materials. Comparisons of experimental and simulated CdTe-on-InSb profiles reveal that the interface is structurally abrupt to within about 1.5 nm (10–90% criterion), while geometric phase analysis based on aberration-corrected electron microscopy images reveals a minimal level of interfacial strain. The present investigation opens new routes to the systematic investigation of heterovalent interfaces, formed by the combination of other valence-mismatched material systems. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures

2019, Wei, Ren, Breite, Daniel, Song, Chen, Gräsing, Daniel, Ploss, Tina, Hille, Patrick, Schwerdtfeger, Ruth, Matysik, Jörg, Schulze, Agnes, Zimmermann, Wolfgang

Polyethylene terephthalate (PET) is the most important mass-produced thermoplastic polyester used as a packaging material. Recently, thermophilic polyester hydrolases such as TfCut2 from Thermobifida fusca have emerged as promising biocatalysts for an eco-friendly PET recycling process. In this study, postconsumer PET food packaging containers are treated with TfCut2 and show weight losses of more than 50% after 96 h of incubation at 70 °C. Differential scanning calorimetry analysis indicates that the high linear degradation rates observed in the first 72 h of incubation is due to the high hydrolysis susceptibility of the mobile amorphous fraction (MAF) of PET. The physical aging process of PET occurring at 70 °C is shown to gradually convert MAF to polymer microstructures with limited accessibility to enzymatic hydrolysis. Analysis of the chain-length distribution of degraded PET by nuclear magnetic resonance spectroscopy reveals that MAF is rapidly hydrolyzed via a combinatorial exo- and endo-type degradation mechanism whereas the remaining PET microstructures are slowly degraded only by endo-type chain scission causing no detectable weight loss. Hence, efficient thermostable biocatalysts are required to overcome the competitive physical aging process for the complete degradation of postconsumer PET materials close to the glass transition temperature of PET.

Loading...
Thumbnail Image
Item

Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane

2019, Gumz, Hannes, Boye, Susanne, Iyisan, Banu, Krönert, Vera, Formanek, Petr, Voit, Brigitte, Lederer, Albena, Appelhans, Dietmar

Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.

Loading...
Thumbnail Image
Item

Advanced GeSn/SiGeSn Group IV Heterostructure Lasers

2018, von den Driesch, Nils, Stange, Daniela, Rainko, Denis, Povstugar, Ivan, Zaumseil, Peter, Capellini, Giovanni, Schröder, Thomas, Denneulin, Thibaud, Ikonic, Zoran, Hartmann, Jean-Michel, Sigg, Hans, Mantl, Siegfried, Grützmacher, Detlev, Buca, Dan

Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III–V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.

Loading...
Thumbnail Image
Item

In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping

2017, Nishiguchi, Akihiro, Mourran, Ahmed, Zhang, Hang, Möller, Martin

Self-shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D-complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in-gel direct laser writing (in-gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.

Loading...
Thumbnail Image
Item

Turning a Killing Mechanism into an Adhesion and Antifouling Advantage

2019, Dedisch, Sarah, Obstals, Fabian, los Santos Pereira, Andres, Bruns, Michael, Jakob, Felix, Schwaneberg, Ulrich, Rodriguez‐Emmenegger, Cesar

Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb-Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation

2018, Dörr, Tobias Sebastian, Deilmann, Leonie, Haselmann, Greta, Cherevan, Alexey, Zhang, Peng, Blaha, Peter, de Oliveira, Peter William, Kraus, Tobias, Eder, Dominik

Pure and Nb-doped TiO2 photocatalysts with highly ordered alternating gyroid architecture and well-controllable mesopore size of 15 nm via co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer are synthesized. A combined effort by electron microscopy, X-ray scattering, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, and density functional theory simulations reveals that the addition of small amounts of Nb results in the substitution of Ti4+ with isolated Nb5+ species that introduces inter-bandgap states, while at high concentrations, Nb prefers to cluster forming shallow trap states within the conduction band minimum of TiO2. The gyroidal photocatalysts are remarkably active toward hydrogen evolution under UV and visible light due to the open 3D network, where large mesopores ensure efficient pore diffusion and high photon harvesting. The gyroids yield unprecedented high evolution rates beyond 1000 µmol h−1 (per 10 mg catalyst), outperforming even the benchmark P25-TiO2 more than fivefold. Under UV light, the Nb-doping reduces the activity due to the introduction of charge recombination centers, while the activity in the visible triple upon incorporation is owed to a more efficient absorption due to inter-bandgap states. This unique pore architecture may further offer hitherto undiscovered optical benefits to photocatalysis, related to chiral and metamaterial-like behavior, which will stimulate further studies focusing on novel light–matter interactions.