Search Results

Now showing 1 - 5 of 5
  • Item
    Characterization of the demonstrator of the fast silicon monolithic ASIC for the TT-PET project
    (London : Inst. of Physics, 2019) Paolozzi, L.; Bandi, Y.; Cardarelli, R.; Débieux, S.; Favre, Y.; Ferrère, D.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.
    The TT-PET collaboration is developing a small animal TOF-PET scanner based on monolithic silicon pixel sensors in SiGe BiCMOS technology. The demonstrator chip, a small-scale version of the final detector ASIC, consists of a 03 × 1 pixel matrix integrated with the front-end, a 50 ps binning TDC and read out logic. The chip, thinned down to 100 µm and backside metallized, was operated at a voltage of 180 V. The tests on a beam line of minimum ionizing particles show a detection efficiency greater than 99.9% and a time resolution down to 110 ps. © 2019 CERN.
  • Item
    Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project
    (London : Inst. of Physics, 2018) Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.
    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e− RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .
  • Item
    A 50 ps resolution monolithic active pixel sensor without internal gain in SiGe BiCMOS technology
    (London : Inst. of Physics, 2019) Iacobucci, G.; Cardarelli, R.; Débieux, S.; Di Bello, F.A.; Favre, Y.; Hayakawa, D.; Kaynak, M.; Nessi, M.; Paolozzi, L.; Rücker, H.; Sultan, D.M.S.; Valerio, P.
    A monolithic pixelated silicon detector designed for high time resolution has been produced in the SG13G2 130 nm SiGe BiCMOS technology of IHP. This proof-of-concept chip contains hexagonal pixels of 65 µm and 130 µm side. The SiGe front-end electronics implemented provides an equivalent noise charge of 90 and 160 e- for a pixel capacitance of 70 and 220 fF, respectively, and a total time walk of less than 1 ns. Lab measurements with a 90Sr source show a time resolution of the order of 50 ps. This result is competitive with silicon technologies that integrate an avalanche gain mechanism. © 2019 CERN.
  • Item
    Advanced Signal Processing and Adaptive Learning Methods
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2019) Delić, Vlado; Stamenković, Zoran; Pokrajac, David
    [No abstract available]
  • Item
    Radio Frequency CMOS Chem-bio Viscosity Sensors based on Dielectric Spectroscopy
    ([Setúbal] : SCITEPRESS - Science and Technology Publications, Lda., 2017) Guha, Subhajit; Wenger, Christian; Peixoto, Nathalia; Fred, Ana; Gamboa, Hugo; Vaz, Mário
    This paper presents a CMOS Radio frequency dielectric sensor platform for the detection of relative viscosity changes in a fluid sample. The operating frequency of the sensor is 12.28 GHz. This frequency range has been chosen for high signal to noise ratio and also to avoid other low frequency dispersion mechanisms for future lab on chip applications. The sensor chip has been fabricated in 250 nm BiCMOS technology of IHP. The measurements conducted to show the relative viscosity variation detection capability of the sensor chip, were based on mixtures of glycerol and water as well as glycerol and organic alcohol. The detection limit of viscosity is dependent on the permittivity contrast of the sample constituent. Therefore, it is also shown the choice of frequency inherently aids in the permittivity contrast of the sample constituents.