Search Results

Now showing 1 - 10 of 21
  • Item
    Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells
    (Cambridge : RSC Publ., 2017) Bachhuka, Akash; Delalat, Bahman; Ghaemi, Soraya Rasi; Gronthos, Stan; Voelcker, Nicolas H.; Vasilev, Krasimir
    Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
  • Item
    Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications
    (Cambridge : RSC Publ., 2019) Sonntag, Luisa; Shamraienko, Volodymyr; Fan, Xuelin; Samadi Khoshkhoo, Mahdi; Kneppe, David; Koitzsch, Andreas; Gemming, Thomas; Hiekel, Karl; Leo, Karl; Lesnyak, Vladimir; Eychmüller, Alexander
    In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V−1 s−1.
  • Item
    The mutual dependence of negative emission technologies and energy systems
    (Cambridge : RSC Publ., 2019) Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme; Minx, Jan; Peters, Glen P.; Socolow, Robert
    While a rapid decommissioning of fossil fuel technologies deserves priority, most climate stabilization scenarios suggest that negative emission technologies (NETs) are required to keep global warming well below 2 °C. Yet, current discussions on NETs are lacking a distinct energy perspective. Prominent NETs, such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS), will integrate differently into the future energy system, requiring a concerted research effort to determine adequate means of deployment. In this perspective, we discuss the importance of energy per carbon metrics, factors of future cost development, and the dynamic response of NETs in intermittent energy systems. The energy implications of NETs deployed at scale are massive, and NETs may conceivably impact future energy systems substantially. DACCS outperform BECCS in terms of primary energy required per ton of carbon sequestered. For different assumptions, DACCS displays a sequestration efficiency of 75–100%, whereas BECCS displays a sequestration efficiency of 50–90% or less if indirect land use change is included. Carbon dioxide removal costs of DACCS are considerably higher than BECCS, but if DACCS modularity and granularity helps to foster technological learning to <100$ per tCO2, DACCS may remove CO2 at gigaton scale. DACCS also requires two magnitudes less land than BECCS. Designing NET systems that match intermittent renewable energies will be key for stringent climate change mitigation. Our results contribute to an emerging understanding of NETs that is notably different to that derived from scenario modelling.
  • Item
    Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields
    (Cambridge : RSC Publ., 2019) Korchak, Sergey; Emondts, Meike; Mamone, Salvatore; Blümich, Bernhard; Glöggler, Stefan
    Hyperpolarized metabolites are very attractive contrast agents for in vivo magnetic resonance imaging studies enabling early diagnosis of cancer, for example. Real-time production of concentrated solutions of metabolites is a desired goal that will enable new applications such as the continuous investigation of metabolic changes. To this end, we are introducing two NMR experiments that allow us to deliver high levels of polarization at high concentrations (50 mM) of an acetate precursor (55% 13C polarization) and acetate (17% 13C polarization) utilizing 83% para-state enriched hydrogen within seconds at high magnetic field (7 T). Furthermore, we have translated these experiments to a portable low-field spectrometer with a permanent magnet operating at 1 T. The presented developments pave the way for a rapid and affordable production of hyperpolarized metabolites that can be implemented in e.g. metabolomics labs and for medical diagnosis.
  • Item
    Non-touching plasma–liquid interaction – where is aqueous nitric oxide generated?
    (Cambridge : RSC Publ., 2018) Jablonowski, Helena; Schmidt-Bleker, Ansgar; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Wende, Kristian
    Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-assembled initiator monolayer in a monomer solution with single-layer graphene separating the initiator from the monomer. We demonstrate that neutral monomers are able to pass through the graphene (via native defects) and increase the graphene defects ratio (Raman ID/IG) from ca. 0.09 to 0.22. The translocations of anionic and cationic monomers through graphene are significantly slower due to chemical interactions of monomers with the graphene defects. Interestingly, if micropatterned initiator-monolayers are used, the translocations of anionic monomers apparently cut the graphene sheet into congruent microscopic structures. The varied interactions between monomers and graphene defects are further investigated by quantum molecular dynamics simulations.
  • Item
    Magnetically responsive composites: electron beam assisted magnetic nanoparticle arrest in gelatin hydrogels for bioactuation
    (Cambridge : RSC Publ., 2019) Deuflhard, Marie; Eberbeck, Dietmar; Hietschold, Philine; Wilharm, Nils; Mühlberger, Marina; Friedrich, Ralf P.; Alexiou, Christoph; Mayr, Stefan G.
    As emerging responsive materials, ferrogels have become highly attractive for biomedical and technical applications in terms of soft actuation, tissue engineering or controlled drug release. In the present study, bioderived ferrogels were fabricated and successfully deformed within moderate, heterogeneous magnetic fields. Synthesis was realized by arresting iron oxide nanoparticles in porcine gelatin by introduction of covalent crosslinks via treatment with energetic electrons for mesh refinement. This approach also allows for tuning thermal and mechanical stability of the gelatin matrix. Operating the bioferrogel in compression, magnetic forces on the nanoparticles are counterbalanced by the stiffness of the hydrogel matrix that is governed by a shift in thermodynamic equilibrium of swelling, as derived in the framework of osmosis. As gelatin and iron oxide nanoparticles are established as biocompatible constituents, these findings promise potential for in vivo use as contactless mechanical transducers.
  • Item
    Parahydrogen-induced polarization with a metal-free P–P biradicaloid
    (Cambridge : RSC Publ., 2019) Zhivonitko, Vladimir V.; Bresien, Jonas; Schulz, Axel; Koptyug, Igor V.
    Metal-free H2 activations are unusual but interesting for catalytic transformations, particularly in parahydrogen-based nuclear spin hyperpolarization techniques. We demonstrate that metal-free singlet phosphorus biradicaloid, [P(μ-NTer)]2, provides pronounced 1H and 31P hyperpolarization while activating the parahydrogen molecules. A brief analysis of the resulting NMR signals and the important kinetic parameters are presented.
  • Item
    Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach
    (Cambridge : RSC Publ., 2017) Rumyantsev, Artem M.; Potemkin, Igor I.
    A polyelectrolyte complex (PEC) of oppositely charged linear chains is considered within the Random Phase Approximation (RPA). We study the salt-free case and use the continuous model assuming a homogeneous distribution of the charges throughout the polyions. The RPA correction to the PEC free energy is renormalized via subtraction of polyion self-energy in order to find the correlation free energy of the complex. An analogous procedure is usually carried out in the case of the Debye–Hückel (DH) plasma (a gas of point-like ions), where the infinite self-energy of point-like charges is subtracted from the diverging RPA correction. The only distinction is that in the PEC both the RPA correction and chain self-energy of connected like charges are convergent. This renormalization allows us to demonstrate that the correlation free energy of the PEC is negative, as could be expected, while the scaling approach postulates rather than proving the negative sign of the energy of interactions between the blobs. We also demonstrate that the increasing concentration of oppositely charged polyions in the solution first results in the formation of neutral globules of the PEC consisting of two polyions as soon as the concentration reaches a certain threshold value, cgl, whereas solution macroscopic phase separation (precipitation of globules) occurs at a much higher concentration, ccoac, ccoac ≫ cgl. Partitioning of polyions between different states is calculated and analytical dependencies of cgl and ccoac on the polyion length, degree of ionization and solvent polarity are found.
  • Item
    Judging the feasibility of TiO2 as photocatalyst for chemical energy conversion by quantitative reactivity determinants
    (Cambridge : RSC Publ., 2019) Dilla, Martin; Moustakas, Nikolaos G.; Becerikli, Ahmet E.; Peppel, Tim; Springer, Armin; Schlögl, Robert; Strunk, Jennifer; Ristig, Simon
    In this study we assess the general applicability of the widely used P25-TiO2 in gas-phase photocatalytic CO2 reduction based on experimentally determined reactivity descriptors from classical heterogeneous catalysis (productivity) and photochemistry (apparent quantum yield/AQY). A comparison of the results with reports on the use of P25 for thermodynamically more feasible reactions and our own previous studies on P25-TiO2 as photocatalyst imply that the catalytic functionality of this material, rather than its properties as photoabsorber, limits its applicability in the heterogeneous photocatalytic CO2 reduction in the gas phase. The AQY of IrOx/TiO2 in overall water splitting in a similar high-purity gas-solid process was four times as high, but still far from commercial viability.
  • Item
    The role of pH, metal ions and their hydroxides in charge reversal of protein-coated nanoparticles
    (Cambridge : RSC Publ., 2019) Schubert, Jonas; Radeke, Carmen; Fery, Andreas; Chanana, Munish
    In this study, we investigated charge inversion of protein-coated Au nanoparticles caused by the addition of metal ions. The addition of hydrolyzable metal ions (Lewis acids) can induce drastic pH changes and depending on this pH, the metal ions (e.g. M3+) are readily converted into the hydrolyzed species (MOH2+, M(OH)2+) or even into hydroxides (M(OH)3). Adsorbed metal hydroxides were identified to cause the charge inversion of the NPs by using a combination of cryo-TEM, EFTEM and ζ-potential measurements.