Search Results

Now showing 1 - 10 of 88
  • Item
    Nitrous oxide emissions from winter oilseed rape cultivation
    (Amsterdam [u.a.] : Elsevier, 2017) Ruser, Reiner; Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Quinones, Teresa Suarez; Augustin, Jürgen; Christen, Olaf; Dittert, Klaus; Kage, Henning; Lewandowski, Iris; Prochnow, Annette; Stichnothe, Heinz; Flessa, Heinz
    Winter oilseed rape (Brassica napus L., WOSR) is the major oil crop cultivated in Europe. Rapeseed oil is predominantly used for production of biodiesel. The framework of the European Renewable Energy Directive requires that use of biofuels achieves GHG savings of at least 50% compared to use of fossil fuel starting in 2018. However, N2O field emissions are estimated using emission factors that are not specific for the crop and associated with strong uncertainty. N2O field emissions are controlled by N fertilization and dominate the GHG balance of WOSR cropping due to the high global warming potential of N2O. Thus, field experiments were conducted to increase the data basis and subsequently derive a new WOSR-specific emission factor. N2O emissions and crop yields were monitored for three years over a range of N fertilization intensities at five study sites representative of German WOSR production. N2O fluxes exhibited the typical high spatial and temporal variability in dependence on soil texture, weather and nitrogen availability. The annual N2O emissions ranged between 0.24 kg and 5.48 kg N2O-N ha−1 a−1. N fertilization increased N2O emissions, particularly with the highest N treatment (240 kg N ha−1). Oil yield increased up to a fertilizer amount of 120 kg N ha−1, higher N-doses increased grain yield but decreased oil concentrations in the seeds. Consequently oil yield remained constant at higher N fertilization. Since, yield-related emission also increased exponentially with N surpluses, there is potential for reduction of the N fertilizer rate, which offers perspectives for the mitigation of GHG emissions. Our measurements double the published data basis of annual N2O flux measurements in WOSR. Based on this extended dataset we modeled the relationship between N2O emissions and fertilizer N input using an exponential model. The corresponding new N2O emission factor was 0.6% of applied fertilizer N for a common N fertilizer amount under best management practice in WOSR production (200 kg N ha−1 a−1). This factor is substantially lower than the linear IPCC Tier 1 factor (EF1) of 1.0% and other models that have been proposed. © 2017
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR
    (Basel : MDPI AG, 2019) Tsoulias, Nikos; Paraforos, Dimitrios S.; Fountas, Spyros; Zude-Sasse, Manuela
    Data of canopy morphology are crucial for cultivation tasks within orchards. In this study, a 2D light detection and range (LiDAR) laser scanner system was mounted on a tractor, tested on a box with known dimensions (1.81 m × 0.6 m × 0.6 m), and applied in an apple orchard to obtain the 3D structural parameters of the trees (n = 224). The analysis of a metal box which considered the height of four sides resulted in a mean absolute error (MAE) of 8.18 mm with a bias (MBE) of 2.75 mm, representing a root mean square error (RMSE) of 1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between laser aperture and the object. A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree. Subsequently, height, stem diameter, and volume of the segmented tree point clouds were estimated and compared with manual measurements. The estimated stem position of each tree was defined using a real time kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5 mm, respectively. The coefficient of determination (R2) considering manual measurements and estimated data from the segmented point clouds appeared high with, respectively, R2 and RMSE of 0.87 and 5.71% for height, 0.88 and 2.23% for stem diameter, as well as 0.77 and 4.64% for canopy volume. Since a certain error for the height and volume measured manually can be assumed, the LiDAR approach provides an alternative to manual readings with the advantage of getting tree individual data of the entire orchard.
  • Item
    Expressing stemflow commensurate with its ecohydrological importance
    (Amsterdam [u.a.] : Elsevier Science, 2018) Carlyle-Moses, Darryl E.; Iida, Shin'ichi; Germer, Sonja; Llorens, Pilar; Michalzik, Beate; Nanko, Kazuki; Tischer, Alexander; Levia, Delphis F.
    Despite some progress, the importance of stemflow remains obscured partly due to computations emphasizing canopy interception loss. We advocate for two metrics—the stand-scale funneling ratio and the stand-scale infiltration funneling ratio—to more accurately portray stemflow inputs and increase comparability across ecosystems. These metrics yield per unit area stemflow inputs orders of magnitude greater than what would have been delivered by throughfall or precipitation alone. We recommend that future studies employ these stand-scale funnelling metrics to express stemflow commensurate with its ecohydrological importance and better conceptualize the role of stemflow in plant-soil interactions, permitting advances in critical zone science. © 2018 The Authors
  • Item
    An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites
    (Basel : MDPI AG, 2019) Gusovius, H.-J.; Lühr, C.; Hoffmann, T.; Pecenka, R.; Idler, C.
    A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.
  • Item
    Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows
    (Berlin ; Heidelberg : Springer, 2018-5-2) Engelke, Stefanie W.; Daş, Gürbüz; Derno, Michael; Tuchscherer, Armin; Berg, Werner; Kuhla, Björn; Metges, Cornelia C.
    Ruminant enteric methane emission contributes to global warming. Although breeding low methane-emitting cows appears to be possible through genetic selection, doing so requires methane emission quantification by using elaborate instrumentation (respiration chambers, SF6 technique, GreenFeed) not feasible on a large scale. It has been suggested that milk fatty acids are promising markers of methane production. We hypothesized that methane emission can be predicted from the milk fatty acid concentrations determined by mid-infrared spectroscopy, and the integration of energy-corrected milk yield would improve the prediction. Therefore, we examined relationships between methane emission of cows measured in respiration chambers and milk fatty acids, predicted by mid-infrared spectroscopy, to derive diet-specific and general prediction equations based on milk fatty acid concentrations alone and with the additional consideration of energy-corrected milk yield. Cows were fed diets differing in forage type and linseed supplementation to generate a large variation in both CH4 emission and milk fatty acids. Depending on the diet, equations derived from regression analysis explained 61 to 96% of variation of methane emission, implying the potential of milk fatty acid data predicted by mid-infrared spectroscopy as novel proxy for direct methane emission measurements. When data from all diets were analyzed collectively, the equation with energy-corrected milk yield (CH4 (L/day) = − 1364 + 9.58 × energy-corrected milk yield + 18.5 × saturated fatty acids + 32.4 × C18:0) showed an improved coefficient of determination of cross-validation R2 CV = 0.72 compared to an equation without energy-corrected milk yield (R2 CV = 0.61). Equations developed for diets supplemented by linseed showed a lower R2 CV as compared to diets without linseed (0.39 to 0.58 vs. 0.50 to 0.91). We demonstrate for the first time that milk fatty acid concentrations predicted by mid-infrared spectroscopy together with energy-corrected milk yield can be used to estimate enteric methane emission in dairy cows. © 2018, The Author(s).
  • Item
    Biochar research activities and their relation to development and environmental quality. A meta-analysis
    (Berlin ; Heidelberg : Springer, 2017-6-6) Mehmood, Khalid; Chávez Garcia, Elizabeth; Schirrmann, Michael; Ladd, Brenton; Kammann, Claudia; Wrage-Mönnig, Nicole; Siebe, Christina; Estavillo, Jose M.; Fuertes-Mendizabal, Teresa; Cayuela, Mariluz; Sigua, Gilbert; Spokas, Kurt; Cowie, Annette L.; Novak, Jeff; Ippolito, James A.; Borchard, Nils
    Biochar is the solid product that results from pyrolysis of organic materials. Its addition to highly weathered soils changes physico-chemical soil properties, improves soil functions and enhances crop yields. Highly weathered soils are typical of humid tropics where agricultural productivity is low and needs to be raised to reduce human hunger and poverty. However, impact of biochar research on scientists, politicians and end-users in poor tropical countries remains unknown; assessing needs and interests on biochar is essential to develop reliable knowledge transfer/translation mechanisms. The aim of this publication is to present results of a meta-analysis conducted to (1) survey global biochar research published between 2010 and 2014 to assess its relation to human development and environmental quality, and (2) deduce, based on the results of this analysis, priorities required to assess and promote the role of biochar in the development of adapted and sustainable agronomic methods. Our main findings reveal for the very first time that: (1) biochar research associated with less developed countries focused on biochar production technologies (26.5 ± 0.7%), then on biochars’ impact on chemical soil properties (18.7 ± 1.2%), and on plant productivity (17.1 ± 2.6%); (2) China dominated biochar research activities among the medium developed countries focusing on biochar production technologies (26.8 ± 0.5%) and on use of biochar as sorbent for organic and inorganic compounds (29.1 ± 0.4%); and (3) the majority of biochar research (69.0±2.9%) was associated with highly developed countries that are able to address a higher diversity of questions. Evidently, less developed countries are eager to improve soil fertility and agricultural productivity, which requires transfer and/or translation of biochar knowledge acquired in highly developed countries. Yet, improving local research capacities and encouraging synergies across scientific disciplines and countries are crucial to foster development of sustainable agronomy in less developed countries. © 2017, The Author(s).
  • Item
    Effect of densification variables on water resistance of corn cob briquettes
    (Tartu : Eesti Pollumajandusulikool, 2019) Orisaleye, J.I.; Jekayinfa, S.O.; Pecenka, R.; Onifade, T.B.
    Solid biofuels can be used in heat and power generation applications. The utilization of agricultural residues for this purpose would be of immense benefit to rural communities of developing countries where the resource is being produced. Water resistance is a crucial property for transport and storage of biomass briquettes under moist climate conditions. In this study, the effect of process and material variables on the water resistance property of corn cob briquettes was investigated. The water resistance of briquettes produced ranged between 32.6 and 94.8% for die temperature between 90 °C and 120 °C, hold time from 7.5 to 15 minutes and die pressures between 9 and 15 MPa. A higher die temperature resulted in an increase in the water resistance of the biomass briquettes. Also, increasing the hold time improved the water resistance of the briquettes. Using a particle size less than 2.5 mm resulted in higher briquette water resistance property compared to briquettes produced from particle sizes greater than 2.5 mm. It was also shown that the effect of the interaction of the temperature with particle size on the water resistance of corn cob briquettes was statistically significant (p < 0.05). © 2019, Eesti Pollumajandusulikool. All rights reserved.
  • Item
    Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth
    (Basel : MDPI, 2019) Paneque, Marina; Knicker, Heike; Kern, Jürgen; De la Rosa, José María
    The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in products free of pathogens, with the potential for being used as soil amendment. With this work, we evaluated the impact of dry pyrolysis-treated (600 °C, 1 h) and HTC-treated (200 °C, 260 °C; 0.5 h, 3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of 5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination, survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and survival rates, which may be related to the low N availability of this sample. In comparison to the control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though some hydrochars decreased plant germination and survival rates. Among all the evaluated char properties, only the organic and inorganic N contents of the chars, along with their organic C values, positively correlated with total and shoot biomass production. Our work demonstrates the N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar produced at 260 °C and the pyrochars were less efficient with respect to plant yields.
  • Item
    Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts
    (Göttingen : Copernicus, 2019) Hempel, Sabrina; Menz, Christoph; Pinto, Severino; Galán, Elena; Janke, David; Estellés, Fernando; Müschner-Siemens, Theresa; Wang, Xiaoshuai; Heinicke, Julia; Zhang, Guoqiang; Amon, Barbara; del Prado, Agustín; Amon, Thomas
    In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.