Search Results

Now showing 1 - 3 of 3
  • Item
    Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments
    (Weinheim : Wiley-VCH, 2018-6-7) Almansoori, Alaa; Masters, Robert; Abrams, Kerry; Schäfer, Jan; Gerling, Torsten; Majewski, Candice; Rodenburg, Cornelia
    Polyamide 12 (PA12) powder was exposed for up to 3 h to low pressure air plasma treatment (LP-PT) and several minutes by two different atmospheric pressure plasma jets (APPJ) i.e., kINPen (K-APPJ) and Hairline (H-APPJ). The chemical and physical changes resulting from LP-PT were observed by a combination of Scanning Electron Microscopy (SEM), Hot Stage Microscopy (HSM) and Fourier transform infrared spectroscopy (FTIR), which demonstrated significant changes between the plasma treated and untreated PA12 powders. PA12 exposed to LP-PT showed an increase in wettability, was relatively porous, and possessed a higher density, which resulted from the surface functionalization and materials removal during the plasma exposure. However, it showed poor melt behavior under heating conditions typical for Laser Sintering. In contrast, brief PJ treatments demonstrated similar changes in porosity, but crucially, retained the favorable melt characteristics of PA12 powder.
  • Item
    From patent to product? 50 years of low-pressure plasma sterilization
    (Weinheim : Wiley-VCH, 2018-10-18) Fiebrandt, Marcel; Lackmann, Jan-Wilm; Stapelmann, Katharina
    The development of new sterilization methods is still a major topic. The need for new techniques arises from the development of new instruments and the usage of different materials. Especially in the case of plastics with their beneficial properties, for example, in the field of implantology, plasma sterilization is seen as a promising alternative to the standard methods. However, 50 years after the first patent and although low-pressure plasmas show excellent inactivation performance (>log 6 reduction), only one commercial system is available on the market for a distinct application. We will give a short review about known plasma sterilization mechanisms, the different plasma sterilization systems in use, analyze possible challenges for an industrial process and comment on possible solutions for a broader acceptance and utilization of low-pressure plasma sterilization.
  • Item
    Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting
    (Weinheim : Wiley-VCH, 2019) Haryadi, Bernard Manuel; Hafner, Daniel; Amin, Ihsan; Schubel, Rene; Jordan, Rainer; Winter, Gerhard; Engert, Julia
    The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film-stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg) or melting (Tm)], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface-free energy (SFE) > ≈55 mN m−1, material–water interfacial tension <6 mN m−1), especially if the nanoparticles are soft (<1 GPa), rough (Rrms > 10 nm), porous (>1 m2 g−1), and in possession of low bulk liquefaction temperature (<100 °C). Interestingly, low surface hydrophobicity of nanoparticles can be obtained indirectly by the significant presence of residual stabilizers. Therefore, it is strongly suggested that nonsphericity of particle systems is highly dependent on surface chemistry but cannot be appraised separately from other factors. These results and reviews allot valuable guidelines for the design and manufacturing of nonspherical nanoparticles having adequate shape stability, thereby appropriate with their usage purposes. Furthermore, they can assist in understanding and explaining the possible mechanisms of nonspherical nanoparticles effectivity loss and distinctive material behavior at the nanoscale. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim