Search Results

Now showing 1 - 2 of 2
  • Item
    A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
    (Katlenburg-Lindau : Copernicus, 2018) Kim, HyeJin; Rosa, Isabel M. D.; Alkemade, Rob; Leadley, Paul; Hurtt, George; Popp, Alexander; van Vuuren, Detlef P.; Anthoni, Peter; Arneth, Almut; Baisero, Daniele; Caton, Emma; Chaplin-Kramer, Rebecca; Chini, Louise; De Palma, Adriana; Di Fulvio, Fulvio; Di Marco, Moreno; Espinoza, Felipe; Ferrier, Simon; Fujimori, Shinichiro; Gonzalez, Ricardo E.; Gueguen, Maya; Guerra, Carlos; Harfoot, Mike; Harwood, Thomas D.; Hasegawa, Tomoko; Haverd, Vanessa; Havlík, Petr; Hellweg, Stefanie; Hill, Samantha L. L.; Hirata, Akiko; Hoskins, Andrew J.; Janse, Jan H.; Jetz, Walter; Johnson, Justin A.; Krause, Andreas; Leclère, David; Martins, Ines S.; Matsui, Tetsuya; Merow, Cory; Obersteiner, Michael; Ohashi, Haruka; Poulter, Benjamin; Purvis, Andy; Quesada, Benjamin; Rondinini, Carlo; Schipper, Aafke M.; Sharp, Richard; Takahashi, Kiyoshi; Thuiller, Wilfried; Titeux, Nicolas; Visconti, Piero; Ware, Christopher; Wolf, Florian; Pereira, Henrique M.
    To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.
  • Item
    The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions
    (Katlenburg-Lindau : Copernicus, 2019) Jones, Chris D.; Frölicher, Thomas L.; Koven, Charles; MacDougall, Andrew H.; Matthews, H. Damon; Zickfeld, Kirsten; Rogelj, Joeri; Tokarska, Katarzyna B.; Gillett, Nathan P.; Ilyina, Tatiana; Meinshausen, Malte; Mengis, Nadine; Séférian, Roland; Eby, Michael; Burger, Friedrich A.
    The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.