Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Key determinants of global land-use projections

2019, Stehfest, Elke, van Zeist, Willem-Jan, Valin, Hugo, Havlik, Petr, Popp, Alexander, Kyle, Page, Tabeau, Andrzej, Mason-D’Croz, Daniel, Hasegawa, Tomoko, Bodirsky, Benjamin L., Calvin, Katherine, Doelman, Jonathan C., Fujimori, Shinichiro, Humpenöder, Florian, Lotze-Campen, Hermann, van Meijl, Hans, Wiebe, Keith

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Loading...
Thumbnail Image
Item

Two-thirds of global cropland area impacted by climate oscillations

2018, Heino, M., Puma, M.J., Ward, P.J., Gerten, D., Heck, V., Siebert, S., Kummu, M.

The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.

Loading...
Thumbnail Image
Item

Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency

2018, Runge, Jakob, Balasis, Georgios, Daglis, Ioannis A., Papadimitriou, Constantinos, Donner, Reik V.

The dynamical relationship between magnetic storms and magnetospheric substorms is one of the most controversial issues of contemporary space research. Here, we address this issue through a causal inference approach to two corresponding indices in conjunction with several relevant solar wind variables. We find that the vertical component of the interplanetary magnetic field is the strongest and common driver of both storms and substorms. Further, our results suggest, at least based on the analyzed indices, that there is no statistical evidence for a direct or indirect dependency between substorms and storms and their statistical association can be explained by the common solar drivers. Given the powerful statistical tests we performed (by simultaneously taking into account time series of indices and solar wind variables), a physical mechanism through which substorms directly or indirectly drive storms or vice versa is, therefore, unlikely.